首页 > 范文大全 > 正文

气体识别自组织神经网络

开篇:润墨网以专业的文秘视角,为您筛选了一篇气体识别自组织神经网络范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

【摘要】本文主要对气体识别进行了介绍以及自组织神经网络在气体识别中的应用。通过对人工嗅觉系统的定义、原理以及基本组成部分的描述,介绍了各种类型的气体传感器,最后重点介绍了神经网络中的BP神经网络、RBF神经网络和自组织神经网络,以及神经网络在气体识别中的应用,并结合MATLAB说明其实际应用。

【关键词】气体识别;自组织神经网络

1.引言

气体识别在环境保护、化工控制、家用报警、食品保鲜、温室环境控制、航空航天等领域有着广泛的应用。应用气体传感器进行多组份气体的定性定量研究,可以极大的降低测量成本,减小测量周期,并可实现在线的实时测量。但由于当前气体传感器普遍存在着交叉敏感和选择性差等缺点,使用单一传感器很难实现多组份气体的检测分析。为解决以上问题,一方面可以采用新材料、新工艺来改善传感器本身的性能;另一方面可以将现有的气体传感器构成阵列,并与自组织神经网络技术相结合。本文采用后者的原理,即通过多个敏感程度不同的气体传感器组成传感器阵列,结合神经网络模式识别算法进行气体识别分析。

人工神经网络(Artificial Neuron Networks,ANN)人工神经网络(Artificial Neutral Networks,ANN)是一个由大量简单处理单元广泛连

接而成的复合网络系统。神经元结构是受到生物神经元的启发而得来的。目前应用的神经网络类型有很多,其中应用最广的是BP神经网络,神经网络需要学习的过程,即利用外部条件作用于神经网络,使其能重新对外界做出反应。将气体传感器阵列与采用BP算法进行训练的人工神经网络模式识别技术相结合形成的气体识别系统,是利用传感器阵列对混合气体的高维响应模式来实现对混合气体的定量检测。其中传感器阵列的选取、传感器信号的预处理方法、BP神经网络的结构和参数以及测量环境是影响系统性能的可能因素。

2.人工嗅觉系统

人工嗅觉系统是一种化学分析系统,它由一个具有部分专一性的电子化学传感器阵列和一个合适的模式识别系统组成。由于人工嗅觉系统主要模仿的是生物的嗅觉系统,所以人工嗅觉系统也可被称为“电子鼻”或者电子嗅觉系统。

2.1 电子鼻简介

电子鼻这个术语开始出现于二十世纪八十年代晚期,当时它被用于1987年的一个学术会议。较为科学的电子鼻的概念出现于1994年英国Warwick大学的J.W.Gardner发表的文章中,并且J.W.Gardner综述了世界各国人工嗅觉系统的发展概况。

电子鼻模仿人的鼻子的功能,以电讯号的方式予以表达,可以工作在恶劣或有毒的环境下,在食品、化工、环保、医疗诊断、检验等方面有很重要的应用,其关键技术就是气体传感器阵列。

2.2 人工嗅觉系统的原理及基本组成部分

人工嗅觉系统主要是受生物的嗅觉系统启发和影响,以下是该系统中的关键因素:

(1)对微量、痕量气体分子瞬时敏感的监测器,以得到与气体化学成分相对应的信号;

(2)对检测到的信号进行识别与分类的数据处理器,将有用的信号与噪声加以分离;

(3)将测量数据转换为感官评定指标的智能解释器,得到合理的感官结果。

2.3 气体传感器

气体传感器是一种将气体的成分、浓度等信息转换为可以被人员、仪器仪表、计算机等利用的信息的装置。

2.3.1 半导体气体传感器

半导体气体传感器在气体传感器中约占60%,根据其机理分为电导型和非电导型,电导型中又分为表面型和容积控制性。

2.3.2 表面敏感型传感器元件

表面敏感型传感器元件SnO2-Pd、ZnO-PT、AgO、Pt-SnO2,可检测气体为CO、NO2和氟利昂等,传感材料Pt-SnO2的气体传感器可检测气体为可燃性气体如H2、CO、CH4等。

2.3.3 容积控制型传感材料

容积控制型传感材料有TiO2、CoO-MgO-SnO2等,其半导体气体传感器可检测气体为液化石油气、酒精和燃烧炉气尾气等。

3.神经网络

人工神经网络(Artificial Neuron Networks,ANN)是近年来人工智能的一个重要科学分支。二十世纪五十年代末人工神经网络系统开始作为人工智能的一种重要计算工具逐渐受到重视。进入二十世纪八十年代后期,人工神经网络的研究进入了一个新的高潮。主要原因是:一方面经过几十年迅速发展起来的以逻辑符号处理为主的人工智能理论和冯-诺依曼计算机在处理诸如视觉、听觉、形象思维和联想记忆等智能信息问题时遇到挫折;另一方面,具有并行分布处理模式的人工神经网络本身的研究取得了巨大的进展。

神经网络具有一些不同于其它计算方法的性质和特点以及它自身是基于人类大脑结构和功能而建立起来的,因此具有很多和人类智能类似的特点。首先,神经网络将信息存储在大量的神经元中,具有内在的知识索引功能。信息在网络中使用两种方式被保留:一种是神经元之间的连接,另一种是连接权重因子。其次,人工神经网络具有对周围环境自学习、自适应功能,也可用于处理带噪声的、不完整的数据集。在人工神经网络中,输入与输出的关系不是由单独的神经元直接负责的,相反是与神经元的输入输出有关。最后,人工神经网络模拟人类的学习过程。人类大多数的学习和求解过程都是采用尝试法,而人工神经网络可以以相同的方式运行。

神经元(neuron)即神经网络中的基本处理单元,也就是节点。一般节点由输入与输出、权重因子、内部阀值和函数形式四部分组成。

图1 神经元模型

图1给出了一个基本的神经元模型,它具有R个输入,每个输入都通过一个适当的权值wli和下一层相连,网络输出可表示为:

式中,n为该神经元(序号l)的总输入;

f(n)为神经元输入输出关系的函数,称为作用函数、响应函数或传递函数。

人工神经网络的拓扑结构是指它的处理单元是如何相互连接的,主要由输入层、隐含层和输出层组成。每一节点的输出被送到下一层的所有节点。通过将这些处理单元组成层,将其相互连接起来,并对连接进行加权,从而形成神经网络的拓扑结构,将若干个人工神经元作为有向图的节点,可连接成人工神经网络。其中每一层对于人工神经网络的成功都非常关键。可以将人工神经网络输入层、隐含层和输出层看成为一个通过输入层的所有节点输入特定信息的黑箱。人工神经网络通过节点之间的相互连接关系来处理这些信息,最后从输出层的节点给出最终结果。

4.误差反向传播网络(BP网络)

1985年,以Rumelhart和McClelland为首提出了至今仍广泛接受和使用的误差反向传播学习算法。按照这一算法进行训练的多层神经网络被直接称为BP神经网络。BP网络是一种多层前馈型神经网络,其神经元的传递函数是S型函数,输出量为0到1之间的连续量,它可以实现从输入到输出的任意非线性映射。其权值的调整采用反馈传播学习算法。

目前,在人工神经网络的实际应用中,绝大部分的神经网络模型都采用BP网络及其变化形式。BP网络主要用于以下四方面:

(1)函数逼近:用输入矢量和相应的输出矢量训练一个网络以逼近一个函数;

(2)模式识别:用一个特定的输出矢量将它与输入矢量联系起来;

(3)分类:把输入矢量所定义的合适方式进行分类;

(4)数据压缩:减少输出矢量维数以便于传输和存储。

对于神经网络算法,使用基于误差反向传递的神经网络算法设第p个模式XP=(X1P,X1P,…XNP,)T,p=1,2,…,N(N为模式个数),将其视为BP网络的输入,yip为其实际输出,隐含层和输出层各单元的激活函数采用sigmoid函数,即:

一般基于BP的神经网络算法具体步骤如下:

Step1、构造网络,初始化网络的权矩阵,设置学习因子,动态因子,跌代次数和允许误差;

Step2、从一个网络开始,提供训练模式;

Step3、开始训练第k个网络;

Step4、前向传播过程,对所有训练模式,计算网络的实际输出并与目标输出相比较,如果误差超过运行误差,则进行下一步,否则训练第k+1个网络;

Step5、反向传播过程:计算隐含层和输出层各单元的误差精度,修正权值和阀值:

式中,为学习效率;

di为教师信号或希望输出;

为实际输出yi与希望输出di之差,其中yi和xj是取1或0的离散值。

Step6、继续训练第k个网络。

BP网络的训练函数有traingd、traingdm、traingdx、trainrp、traincgf、traincgp等。由于BP网络的简单性,在人工嗅觉系统的模式识别部分占有很大的比例,许多以前和现在的一些成熟人工嗅觉系统的产品仍然使用BP神经网络进行模式识别。

BP网络的学习是通过求解一个优化问题完成的,从数学的角度看,它是通过函数逼近拟合曲面(线)的想法,并且将其转化为一个非线性优化问题而求解。BP网络是对简单的非线性函数进行复合,经过多次复合后,则可以实现复杂的函数,但存在BP学习算法收敛速度慢、不完备性和隐节点数只能凭经验选取。

由于存在上述问题,科学家们从利用线性的自适应步长加速BP算法和增加动量项来去除收敛过程中的局部最小点。模拟退火(Simulated Annealing,简称SA)思想是由Metopolis等人提出的,它可以很好的避免局部最小点的出现,把它用在优化中是由Kirkpatrick等人提出的。组合优化问题的解空间中的每一个点都代表一个解。不同的解有着不同的目标函数值。优化过程就是在解空间中寻找目标函数的最小解。

SA算法的特点是通用性强、可达到全局最小。传统的启发式搜索算法如快速下降法,每次都是向改进解的方向搜索,往往只能找到一个局部最优解,而不是全局最优解。而SA算法在系统朝能量减少这个总趋势的过程中,允许解的搜索以一定的概率向较差的方向走,以避开局部最小,而最终稳定到全局能量最小的状态。

5.利用自组织神经网络进行气体识别

将被测气体按所需测量精度和浓度范围按成份分成不同的浓度等级,采用标准气体配置这些等级的不同成份气体的所有组合作为标准模态来训练神经网络。通过识别某一未知气体样本的模式,即可以得到未知气体的成份浓度。例如,选用N种互相参比配制混合气体样本。根据传感器的灵敏范围,将配制的气体浓度限制在a1到am以内,浓度变化间隔为l。这样每种气体有m种浓度模式,共计可得到mN个样本。采用这些样本作为原始数据训练自组织神经网络,就可以实现在这一浓度范围内的最大误差为l的气体定量测量。

参考文献

[1]朱献文.基于遗传算法和Hopfield神经网络的字符识别方法[J].电子设计工程,2011,19(18):57-59.