首页 > 文章中心 > 数字逻辑论文

数字逻辑论文范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

“数字逻辑”课程体系的研究与探索

摘 要:21世纪,云计算、物联网的广泛开发和应用,对《数字逻辑》课程教学提出了新的要求。作为计算机类专业的一门重要专业基础课程,本文重点分析了“数字逻辑”课程性质、地位、作用及存在的问题,并结合民族学院教育特点及近十年的教学实践构建了其课程体系,该体系突出了实践教学环节,以提高教学质量。

关键词:数字逻辑 课程体系 计算机 构建 教学质量

中图分类号:G642.4 文献标识码:A 文章编号:1673-9795(2014)02(b)-0155-02

在20世纪80年代,内蒙古自治区的高等院校计算机科学与技术专业都相继开设了“数字逻辑”这门课程,至今开设的有《数字逻辑基础》、《数字逻辑设计》、《数字逻辑与数字电路》、《数字逻辑与数字系统》专科及高职是以选修课的形式开设,本科是以必修课的形式开设;讲授的内容也相同,有的则侧重于数字逻辑理论知识的介绍,有的则侧重于数字逻辑实验及电路设计的介绍,有的则兼顾两者。虽然各院校讲授的内容各不相同,但是他们对该课程的性质、地位、作用及重要性都有了一定的认识。由于“数字逻辑”课程已开设二十多年,而且其覆盖的专业门类较多,涉及的学校类型各异,因此各校在进行“数字逻辑”教学时在一些问题上还存在不同的认识,其中的有些问题还需要进一步研究与探索。

1 “数字逻辑”课程的地位及作用

学生对“数字逻辑”课程的掌握程度,将直接影响到其自身以后的学习、工作及其职业发展方向。他是计算机科学与应用技术及相关专业的一门重要课程。

2 “数字逻辑”课程体系的构建

我们在分析和研究部分高等院校“数字逻辑”课程教学实践的基础上,结合民族学院教育的特点,构建了民族学院“数字逻辑”课程的课程体系。

全文阅读

卡诺图在《数字逻辑电路》教学中的运用

【摘 要】在当前技校生的数字电路教学中,其需要培养学生解决实际问题的能力和创新能力,以适应新形式对此教学的要求。本文首先概述了《数字逻辑电路》的教学特点,分析了《数字逻辑电路》教学中存在的问题,提出了卡诺图在《数字逻辑电路》教学中的运用措施。

【关键词】卡诺图;《数字逻辑电路》;教学措施

《数字逻辑电路》是计算机技术中的基础知识,是很多中职院校的电子信息工程、电子信息科学与技术、电子科学与技术各专业必修的学科基础课和技术基础课。但是在教学中,如何使得数字逻辑课程学习中不借助任何实验仪器, 从而能直观地看到逻辑电路设计的结果,是教学中的难点与重点。随着教学技术的发展与教学理念的概念,在《数字逻辑电路》教学中,卡诺图的运用广泛而灵活。本文具体探讨了卡诺图在《数字逻辑电路》教学中的运用情况,现报告如下。

一 .《数字逻辑电路》的教学特点

(一)《数字逻辑电路》的内容特点

由于《数字逻辑电路》有易于集成、传输质量高、有运算和逻辑推理能力等优点,因此被广泛用于计算机、自动控制、通信、测量等领域。而《数字逻辑电路》的第一个内容特点是为了突出“逻辑”两个字,使用的是独特的图形符号。当前最新教学版本的《数字逻辑电路》中有门电路和触发器两种基本单元电路,其是以晶体管和电阻等元件组成的。比如在 TTL 电路还是 CMOS 电路中,按逻辑功能要求把这些图形符号组合起来画成的图就是逻辑电路图。

(二)《数字逻辑电路》的教学目的

本课程的主要任务是培养学生掌握《数字逻辑电路》方面的基本理论,基本知识和基本技能;了解《数字逻辑电路》技术和实际器件的现状与发展趋势;培养学生独立分析问题和解决问题的能力;与实验课配合,通过实验课的基本训练,理论联系实际。掌握典型《数字逻辑电路》的基本分析方法、设计步骤、实验手段和调试技能;为进一步深入学习专业知识以及电子技术在相关专业中的应用奠定良好的基础;具有较强的查阅电子技术资料的能力和从网络上获取有关信息的能力。

全文阅读

浅谈逻辑代数、逻辑函数、逻辑电路的概念

摘要:数字电子技术中出现了逻辑代数、逻辑函数和逻辑电路的概念,怎么理解“逻辑”二字进而学好数字逻辑电路?本文从初等代数、初等函数出发,通过梳理其概念以及举例来说明和理解“逻辑”的含义。

关键词:数字电子技术;数字电路;逻辑代数;逻辑函数;数字逻辑电路

中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2016)25-0214-02

《数字电子技术》课程以及《模拟电子技术》、《信号与系统》课程是工科专业要求的重要的专业基础必修课,几乎同时开设的三门课。它们在内容上相辅相成、相互渗透,所以学好其中任一门课程对其他两门课程的理解和掌握都非常重要。本文以广泛应用的普通高校教育“十五”国家级规划教材及高等学校规划教材为基础,回顾初等代数、初等函数的概念再结合实例梳理逻辑代数、逻辑函数和逻辑电路中“逻辑”概念并给出它的本质意义。

一、初等代数、初等函数的概念

1.初等代数。初等代数研究对象是代数式的运算和方程的求解。归纳起来初等代数有五条基本运算律、两条等式基本性质、三条指数律。另外,初等代数还有四则运算、乘方和开方六种基本的代数运算。

2.初等函数。初等函数是初等代数的一个重要内容,其定义为:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量,记作y=f(x)。包括基本初等函数5个:幂函数、指数函数、对数函数、三角函数和反三角函数,及由由常数和基本初等函数构成的复合函数。[1,2]

由此可见,初等代数有自己的运算规则及基本性质,初等函数分基本初等函数和复合函数。下面先从逻辑代数、逻辑函数的引入着手归纳出它们和初等代数和初等函数的共性所在。

全文阅读

数字逻辑电路教学中的C语言描述法及其应用

摘要:为了改进数字逻辑电路教学方法以适应电子技术迅猛发展的需要,我们探索和实践了数字逻辑电路教学的新方法,这就是基于计算机高级语言(C语言)的数字逻辑电路课堂教学和实验教学方法,本文重点介绍了本教学方法的特点以及实现方法。

关键词:教学改革;数字逻辑电路;C语言

中图分类号:G642 文献标识码:B

文章编号:1672-5913(2007)10-0090-03

引言

数字逻辑电路课是高等学校计算机科学技术专业的一门必修基础课。在计算机专业基础课程中,它是微机原理与应用、微机接口技术、计算机组成与系统结构等课程的前导课程,有着承上启下的重要地位。该课程从电子计算机的基本硬件组成及数字电子技术着手,对计算机的组成部件的基本电路工作原理展开讨论,使学生掌握有关计算机硬件方面的基础知识,尤其是各数字逻辑电路的基本功能,构成整机数字系统的技术,为培养学生对硬件系统的分析、设计、开发和使用能力打下最基本的基础知识。

数字逻辑电路这门课程学习结果的好坏将对计算机专业的后续课程的学习产生很大的影响。数字逻辑电路是学好计算机专业基础课的必要途径,因此应该重视这门课程教学方法的改进。为了改革目前的数字逻辑电路课教学方法,我们探索了新的数字逻辑电路教学方法,即基于计算机高级语言的数字逻辑电路教学方法。本数字逻辑电路教学方法的特点是用计算机高级语言C语言对数字逻辑电路的基本功能进行描述和实验,也就是用计算机高级语言对我们在数字逻辑电路课程中讲解的全部基本数字逻辑电路进行表示。本方法特别适合与计算机专业的学生,因为计算机专业的学生在学习数字逻辑电路课程之前都学习过了计算机高级语言C语言。这使得他们能够较好的理解数字逻辑电路的这种表示方式,同时也能够使他们在学习数字逻辑电路的这种表示方式中复习计算机的高级语言,并且可以扩展学生的知识面,培养和训练学生的创新能力。它不但能够进行数字逻辑电路的基本教学,还可以用于数字逻辑电路的实验教学和课程设计。

1数字逻辑电路的C语言描述

全文阅读

“数字电子技术”实践教学的研究与实施

摘要:本文介绍了我院在“数字电子技术”课程的实践教学中的新措施。教学效果表明,软硬兼施的实践教学环节有力地支撑了理论教学,有效地将抽象的理论知识与数字电子技术的实现融会贯通,开拓了学生的创新思维,提高了学生分析问题和解决问题的能力。

关键词:数字电子技术;逻辑电路;实践教学;软件仿真

中图分类号:G642 文献标识码:B

1引言

“数字电子技术”是计算机专业学生必修的一门专业基础课。本课程的主要目的是使学生掌握数字系统分析和设计的基本知识与原理,熟悉各种不同规模的逻辑器件,掌握各类逻辑电路分析与设计的基本方法,为数字计算机和其他数字系统的硬件分析与设计奠定坚实的基础。

为了使学生能够真正将课本上的理论知识与实际的数字电子技术电路融会贯通,我校“数字电子技术”课程组授课教师在课堂教学的基础上,精心组织、设计该课程的相关实验,让实践教学环节成为理论教学的有力支撑,使学生更好地将理论与实际结合,高效率地吸取本学科的前沿知识。

2实验教学现状

数字电子技术主要包括小、中和大规模数字电路的分析与设计、可编程逻辑器件和现场可编程门阵列器件、数字系统分析与设计。其教学侧重整个电路的逻辑功能及其应用。在以往相当长一段时间内,由于不具备支持大规模实验的设备,数字系统仿真软件也不成熟,因此国内大多高校只基于“SD―2型数字电子技术实验设备”开设了传统的中、小规模电路的实验,均未开设体现现代电子技术的中、大规模电路的实验。这导致本课程的理论不能全面与实验交融,更不能体现现代数字电子技术的核心,显然不利于学生接受该门课的知识,也与计算机技术的发展格格不入。

全文阅读

计算机类“数字逻辑电路实验”的过三关

摘要:结合实验教学的实践,对非电类计算机专业“数字逻辑电路实验”课程教学中的主要问题进行了讨论,并提出教学改革“过三关”的观点和做法。

关键词:教学改革;实验;数字逻辑电路;计算机专业

中图分类号:G642 文献标识码:A 文章编号:1009-3044(2013)29-6570-02

数字逻辑电路实验课程是电气、电子信息类和部分非电类专业本科生在电子技术方面入门性质的技术课。它在电类专业中深受青睐,但在非电类专业中的教学没引起足够的重视。长期以来,在我校计算机专业类数字逻辑电路实验的实验教学中,出现实验教师难教学生厌学的现象。我们从学生学习该课程的现状着手,通过对该课程的先导课程及后续课程进行调查分析,了解相关理论课学习的状态,并据此提出了相应的实验教学改革措施,分三个阶段对学生的学习能力及动手能力进行培养,我们称之为数字逻辑电路实验课程“过三关”[1]。

1 数字逻辑电路实验的教学改革思路

数字逻辑电路实验在计算机类专业都把它作为一门主干必修课程,但相比专业课来说,非电类专业对该课程地位认识和重视程度是不一样的,普遍存在的一种现象是“重软件轻硬件”[2]。我校计科专业、网工专业的“数字逻辑电路实验”课,安排在第三学期,并具有第二学期的“模拟电子技术”课程的基础。而软工专业的“数电”课安排在第二学期,并没有提前开设“模电”课程,缺乏电路知识的先导。在总课时数压缩的情况下,由于理论课和实验课安排在同一学期,并在第一周同时开课,实验课严重滞后于理论课的进度,造成学生想要学好又觉得心有余而力不足[3]。

第一关:克服对数字电路实验课的心理恐惧关

对计算机专业的学生来说,模拟电子技术和数字逻辑电路都很难学,更难于精。适合计算机专业的专用教材很少,更没有比较适合的实验教材。不得已沿用电类专业的教材,理论偏多偏深。单纯的数字逻辑分析抽象、枯燥、乏味,遇到复杂的逻辑现象更容易让人感到无从下手,产生畏难情绪。例如:教材[4][5]的第二章逻辑门电路,是学生们共同认为最难于理解、头疼困难的内容。在讲解TTL(Transistor-Transistor Logic)基本逻辑门涉及到很多的电路基础知识、基本电路元件(电阻、二极管、三极管等元件)、电路及结构、半导体工艺、以及它们的电流、电压、元件参数等内部电气参数的计算等。对电路原理的理解和对电子元器件认识存在困难。然而,计算机专业学习的重点并不在这些电路的内部原理和前端设计,实验所必需的电路基础知识在课程中的应用暂时不用十分深入,可以不用刻意去理解逻辑器件的内部结构。重点应放在:一是掌握器件输入和输出之间的逻辑功能;二是外部的电气特性其主要参数。相应的基本门电路实验,目的包括掌握TTL基本逻辑门的逻辑功能验证与参数测试;掌握TTL器件的使用规则;进一步熟悉数字逻辑电路实验装置的结构、基本功能和使用方法。“轻里重外”,将集成电路视为“黑匣子”,这样电路基础知识不再构成计算机专业的学生学习的障碍。

全文阅读

利用数据选择器实现组合逻辑函数的方法探究

摘要:组合逻辑电路的设计方法很多,利用基本门电路设计时涉及门极多,电路复杂,稳定性差。随着数字电子技术的发展,利用集成电路实现组合逻辑电路价值越来越大。本文主要探讨利用数据选择器实现组合逻辑函数,使设计电路变得简单,以提高电路的可靠性和稳定性。

关键字:数据选择器,组合逻辑电路,设计

1引言

在数字电子技术中常根据实际问题设计逻辑电路。利用MSI设计组合逻辑电路可以大大的缩小体积、增强功能,其中利用数据选择器设计组合逻辑电路就是一个典型的应用。利用数据选择器实现组合逻辑函数的方法大致可以分为两大类,一是逻辑函数的输入变量多与数据选择器的地址端个数,另一个是逻辑函数的输入变量少于或等于数据选择器的地址端个数。在设计时具体选择什么方法,要根据设计者的需要而定。

2 数据选择器的逻辑功能

数据选择器的功能是根据地址码的控制将多路输入数据选择一路数据作为输出,以实现多输入单输出。数据选择器有n位地址码、 2x位输入数据、一个或两个(互补)输出。每种地址码的组合对应一个输入作为输出,又称为 选1数据选择器。其逻辑功能如图1所示。

实现组合逻辑函数的数据选择器常用的有两种,一是4选1数据选择器,二是8选1数据选择器。4选1数据选择器有2个地址端A1A0 ,四个输入信号D1 D2 D3 D4 ,一个输出Y,逻辑电路图如图2所示。其逻辑功能如真值表1所示。由其真值表可得其表达式为式(1)。

74LS153是集成双4选1数据选择器,引脚示意图如图3所示。它是由两个4选1数据选择器组合而成。其中A1A0 为两个选择器共用的地址端, D1 D2 D3 D4 为数据输入端, sr为使能控制端,低电平有效,Y为输出端。

全文阅读

从数理逻辑观点看计算机专业的理论基础探讨

计算机科学与技术学科包括计算机系统结构、计算机软件与理论、计算机应用技术。一般地说,研究型计算机学院将按一级学科设置专业。离散数学是计算机专业的基础理论,包括数理逻辑、集合论、图论、代数系统、形式语言与自动机等,对于计算机体系结构、计算机软件与理论和计算机应用技术等核心课程的起着重要作用。

本文将从数理逻辑观点看计算机系统结构、计算机软件与理论和计算机应用技术的核心课程,以此探讨数理逻辑的理论基础作用。

1 公理系统及数理逻辑简介

亚里土多德在逻辑史上第一次应用了形式化、公理化的演绎系统,类似自然演绎系统,为逻辑的形式化开了先河。亚里士多德关于演绎证明的逻辑结构给出基本概念,通过定义派生概念;给出公理或公设,通过逻辑证明定理。这种由初始概念、定义、公理、推理规则、定理等所构成的演绎体系,称为公理系统。

欧几里德整理、总结和发展了希腊古典时期的大量数学知识,形成了《几何原本》。实质公理系统,给出点、线、面、角等23个原始定义概念,给出5条公设、5条公理,由公理公设出发加以证明了467定理。这也标志着公理学的产生,是实质公理学的典范。

俄国数学家罗巴切夫斯基提出从直线外一点,至少可以做两条直线和这条直线平行公理,从而发现了锐角非欧几何;1854年黎曼提出在同一平面内任何两条直线都有交点公理,从而发现了钝角非欧几何。非欧几何从直观的空间上升到抽象空间,使得人们认识到区分感性直观与科学抽象的重要性。

弗雷格第一个严格的关于逻辑规律的公理系统。在1879年出版了著作《概念文字:一种模仿算术语言构造的纯思维的形式语言》,他完备地发展了命题演算和谓词演算,第一次把谓词演算形式化,标志着数理逻辑的发展由创建时期进入奠基时期。

皮亚诺提出了自然数算术的一个公理系统用逻辑演算表述数学、推导数学。关于自然数论的五个公理一直沿用到现在,成为自然数论的出发点。

全文阅读

试论基于PBL教学模式的数字逻辑课程教学研究

论文关键词:数字逻辑 pbl教学 教学研究

论文摘 要:针对目前“数字逻辑”课程教学中存在的问题,在分析“数字逻辑”课程的特点、教学现状和pbl教学模式内涵的基础上,文章提出将pbl教学方法应用于“数字逻辑”教学过程中的观点,并提出“2+2”教学方案。教学实践表明,将pbl教学模式应用于数字逻辑课程中,提高了学生学习的积极性和主动性,使他们进一步加深了对数字逻辑的原理、知识、概念的理解,为后续课程的学习奠定了坚实的基础。

“数字逻辑”课程是理工类专业的技术基础课,从计算机的层次结构上讲,“数字逻辑”是深入了解计算机“内核”的一门最关键的基础课程,同时也是一门实践性很强的课程[1]。其任务是使学生掌握数字逻辑与系统的工作原理和分析方法,能对主要的逻辑部件进行分析和设计,学会使用标准的集成电路和高密度可编程逻辑器件,掌握数字系统的基本设计方法,为进一步学习各种超大规模数字集成电路的系统设计打下基础。

pbl全称为problem—based learning,被翻译成“基于问题学习”或“问题式学习”。其基本思路是以问题为基础来展开学习和教学过程[2]。pbl教学法是以问题为基础,以学生为主体,以小组讨论形式,在老师的参与和指导下,围绕某一具体问题开展研究和学习的过程,培养学生独立思考能力[3]。如今pbl教学已经成为美国教育中最重要和最有影响力的教学方法。

1 研究背景

1.1 数字逻辑课程的内容及其教学中存在的问题

数字逻辑课程的主要内容包括数字逻辑基础和数字电路两个部分,在学习过程中学生应把握好这两条贯穿整个课程的主线。数字逻辑基础是研究数字电

路的数学基础,教师在教学中应使学生明确数字电路中逻辑变量的概念,掌握逻辑代数(布尔代数)的基本运算公式、定理,能够熟练对逻辑函数进行化简。数字电路是解决逻辑问题的硬件电路,包括组合逻辑电路和时序逻辑电路两种基本形式。对于每一种电路形式,教师应指导学生从基本单元电路入手,熟悉其常用中规模集成电路的原理及使用方法,掌握数字电路(组合和时序电路)的分析和设计方法,并了解数字系统的现代设计方法。

全文阅读

浅谈数字电路组成

摘要:随着科学技术的发展,数字电路在现代科技中运用越来越广泛,本文就数字电路的发展形势简单讨论它的基本组成。数字电路包括逻辑代数的基本定律、组合逻辑电路设计和时序逻辑电路的设计。

关键字:数字电路;组合逻辑电路;时序逻辑电路

中图分类号:TN79文献标识码:A 文章编号:1673-0992(2010)06A-0042-01

众所周知,近年,科学技术的不断进步带动许多行业发生了翻天覆地的变化,电子信息行业走在了科学发展的前列,表现尤为突出的是数字电子技术,科学进步的浪潮中它迅速前进,已成为当前发展最快的学科之一,数字逻辑器件已从60年代的小规模集成电路(SSI)发展到目前的中、大规模集成电路(MSI、LSI)及超大规模集成电路(VLSI)。那么,逻辑器件的变化也会影响整个数字逻辑电路的发展。

一、数字电路的状态

数字电路顾名思义就是对数字信号进行算术运算和逻辑运算的电路,它只有两个状态就是0和1。在数字电路中,低电平用0表示,高电平用1表示,有时低电位也用字母L(Light)表示,而高电位用字母H(High)表示。另外在对0和1理解时,还会有时间限制,因为数字0、1表示电路状态,结合时间看电路时,要明白电路工作时序。

二、数字逻辑电路的基本定律

数字电路的设计在生活中使用非常广泛,但是怎样设计出符合要求的电路,这就是一门技术活了。因此理解数字电路设计,重点在基本概念和基本方法上。数字设计中逻辑代数基本定律、组合逻辑和时序逻辑的概念是分析和设计数字系统的基础,也是设计大规模集成芯片的基础,所以我们在说数字电路设计之前就要先了解逻辑代数的基本知识定律。逻辑代数是英国数学家乔治.布尔(Geroge . Boole)于1847年首先进行系统论述的,也称布尔代数。 所研究的是两值变量的运算规律,即0,1表示两种不同的逻辑状态,称这种只有两种对立逻辑状态的逻辑关系为二值逻辑。在逻辑代数中我们最先了解的就是进制的转换,计算机系统中一般二进制、八进制、十进制、十六进制是了解最多的,转换这些进制也是最容易的,掌握其中的计算方法就能得到。

全文阅读