首页 > 文章中心 > 三角函数值

三角函数值范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

知三角函数值求角教案

教学目标:了解反三角函数的定义,掌握用反三角函数值表示给定区间上的角

教学重点:掌握用反三角函数值表示给定区间上的角

教学难点:反三角函数的定义

教学过程:

一.问题的提出:

在我们的学习中常遇到知三角函数值求角的情况,如果是特殊值,我们可以立即求出所有的角,如果不是特殊值(),我们如何表示呢?相当于中如何用来表示,这是一个反解的过程,由此想到求反函数。但三角函数由于有周期性,它们不存在反函数,这就要求我们把它们的定义域缩小,并且这个区间满足:

(1)包含锐角;(2)具有单调性;(3)能取得三角函数值域上的所有值。

显然对,这样的区间是;对,这样的区间是;对,这样的区间是;

全文阅读

三角函数值的计算六法

锐角三角函数是初中数学的重要内容,是解直角三角形的基础.锐角三角函数值的计算对于初学者来说是一个难点.让我们一起来总结有关的三角函数值的解题方法.

一、定义法

例1 三角形在正方形网格纸中的位置如图1所示,则sinα的值是().

A. B. C. D.

解析: 由正方形网格可知,角α的对边的长为3,邻边的长为4,要求sinα,只要根据勾股定理求出三角形的斜边,再根据三角函数的定义计算即可.

设α的对边为a,邻边为b,斜边为c,则a=3,b=4,所以c= =5.所以sinα= = .选C.

评注: 解答这类问题最易发生的错误,是搞错边的比的关系.有时定义记准确了,实际计算时又犯糊涂.克服办法

就是计算时每一步都要细心.

全文阅读

三角函数式求值论文

1.给值求值给出角的一种三角函数值,求另外的三角函数式的值,常用到同角三角函数的基本关系及其推论,有时还用到“配角”的技巧,解题的关键是找出已知条件与欲求的值之间的角的运算及函数名称的差异,对已知式与欲求式施以适当的变形,以达到解决问题的目的。

例2已知1+tanα1-tanα=5+26求1-sin2αcos2α的值

策略:要求1-sin2αcos2α的值,条件1+tanα1-tanα=5+26是非常重要的,要从这一条件出发,将α的某一三角函数值求出,即可获解。

解析:1+tanα1-tanα=tan45°+tanα1-tan45°tanα=tan(45°+α)=5+26

cos2α1-sin2α=sin(90°+2α)1+cos(90°+2α)=tan(45°+α)

1-sin2α1cos2α=1tan(45°+α)=15+26=5-26

2.给角求值要求熟练掌握两角和与差的三角函数的基本公式、二倍角公式,特别要注意逆向使用和差角公式与二倍角公式,以此将非特殊角的三角函数转化为特殊角的三角函数。

例1

全文阅读

三角函数的求值与化简

中图分类号:G623.5

三角函数中的求值问题主要有:已知某三角函数,求另外某些三角函数值或三角式的值;已知某三角函数式的值,求某些三角函数或三角式的值,求某些非特殊角的三角式的值等几类,解决这类问题不仅需要用到三角函数的定义域、值域、单调性、图像以及三角函数的恒等变化,还常涉及到函数、不等式、方程及几何计算等众多知识,这类问题往往概念性强,具有一定的综合性和灵活性。我以为就三角函数的求值与计算应注重以下问题:

一、三角函数式的化简:

(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。

(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数

二、三角函数的求值类型有三类:

(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;

(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如 等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;

全文阅读

谈三角函数的最值求法

摘 要:三角函数是数学学习中最常见的概念,在整个数学学习中也是最重要的组成部分,三角函数的公式复杂多变,需要解题人员具有扎实的学习基础和对公式灵活运用的头脑,此外,三角函数的内容具有抽象性、综合性、技巧性,这样增加了理解难度和学生对于知识的掌握程度,本文通过举例说明介绍了三角函数最值求法中常见错误和解题技巧。

关键词:三角函数;最值;题解

中图分类号:G633.6 文献标识码:A

前言

在数学教学中三角函数是学习章程中独立的一章,也是在历年的考试中重要的考点之一,要想把三角函数学好,首先必须要对之前所学的三角公式灵活运用,能快速的看出需要变形的恒等。三角函数的最值运算是结合了许多数学知识和运算方法,所以在解题的过程中很可能会因为变形错误、问题理解错误等诸多问题而最后影响了运算结果。所以在学习三角函数最值的时候,同学们应有针对性的学习,对教学的重点、难点提前预习,理解渗透三角函数的应用公式,学习的时候注意听老师的思维方法和解题步骤,这样会对学习三角函数最值有很大的帮助。

在求最值的问题的时候首先要了解求什么类型的最值,其中三角函数的的最值是利用三角函数性质来解决,如果是求一般的最值问题,现在普遍运用的方法一种是利用函数的单调性,另一种是利用导数,在学习三角函数之前可以把曾经做过的有关最值问题进行细致总结,分析题目中所给出的几个方向,方向的选择是通过读题,如果出现多套思路,只要灵活运用所学到的数学方法去处理问题就行。

1 求三角函数最值的方法

求三角函数最值的方法有很多,其中最常用的有配方法、反求法、分离常数法、辅助角法、换元法、不等式法等方法,但是在学习三角函数最值的时候,如果让学生学习如此多的方法,会使他们造成公式混乱更加难以理解学习的内容,学到最后连最基本的方法都没有掌握,出现“丢西瓜捡芝麻”的情况。所以在学习三角函数最值的时候,重点掌握三种方法,它们是所有方法当中最基本也是最常用的,有配方法、反求法、辅助角法,其中反求法的应用范围与分离常数法是异曲同工之妙,它们都要在掌握变形的是同时又需要灵活运用,这种方法通俗易懂、化繁为简,但是分离常数法不能像反求法一样作为重点学习。

全文阅读

三角函数式的求值

1. 给角求值要求熟练掌握两角和与差的三角函数的基本公式、二倍角公式,特别要注意逆向使用和差角公式与二倍角公式,以此将非特殊角的三角函数转化为特殊角的三角函数。

例1

求值:sec50°+tan10°

解析:sec50°+tan10°

=1cos50°+cos10°sin10° =1sin40°+cos80°sin80°

=2cos40°+cos80°sin80°=cos40°+cos40°+cos80°sin80°

=cos40°+cos(60°-20°)+cos(60°+20°)cos10°

=cos40°+cos20°cos10° =2cos30°cos10°cos10°=3

全文阅读

三角函数中的最值问题

三角函数式的最值问题是函数最值的重要组成部分,也是历届高考的热点之一.三角函数的最值问题不仅与三角自身的所有基础知识密切相关,而且与代数中的二次函数、一元二次方程、不等式及某些几何知识的联系也很密切.因此,三角函数的最值问题的求解,往往要综合应用多方面的知识.

三角函数的最值问题的类型很多,其常见类型有以下几种.

一、形如y=a+bsinx(或cosx,x∈R)的最值

方法:利用正、余弦函数的有界性解决.

例1:求y=+cos4x的最值.

解:y=+cos4x

当cos4x=1即x=(k∈z)时,有y=1;

当cos4x=-1即x=+(k∈z)时,有y=.

全文阅读

盘点三角函数求值问题

三角函数的求值是三角函数章节中的一个重点内容,也是高考的热点。它往往出现在小题中,或者是作为解答题中的一个小问,其中必然渗透着简单的三角恒等变换和三角函数的性质,着重考查三角函数的基础知识、基本技能和基本方法。下面对三角函数的求值问题进行归类分析。

一、 “给角求值”

一般所给出的角都是非特殊角,从表面来看是很难的,但仔细观察则非特殊角与特殊角总有一定的关系。解题时,要利用观察得到的关系,结合三角关系转化为特殊角,并且求出特殊角的三角函数而得解。

点评本题中“切化弦”是解题的关键,它为逆用

和角公式铺平了道路,然后通过对角的合理变换,将其转化为特殊角的三角函数值的求解问题。

二、 “给值求值”

给出某些角的三角函数式的值,求另外一些角的三角函数式的值,解题关键在于“变角”,使其角相同或具有某种关系。

点评化未知角为已知角的思考,抓住了问题的本质是函数值与自变量之间的最基本的对应关系,而不是“变角”技巧。同时,在求解三角函数值时,一方面要注意角的取值情况,切勿出现增根,另一方面要关注角与角之间的关系。通过应用整体法来处理各个角,以减少问题的运算量。

全文阅读

三角复合函数最值求法一分解函数法

【摘要】三角复合函数最值的求法有多种,本文笔者通过例题来阐述分解函数法的应用,为学生和读者们以后的结题带来一些信息的思路和方法.

【关键词】三角复合函数;分解函数法;中学教学

三角函数形成的复合函数的最值的探究是历年高考命题的一个热点,笔者认为:若y是x的复合函数求最值,首先可引入中间变量,写出组成复合函数的基本函数,即把复合函数分解为几个基本函数;其次由x的取值范围求出中间变量的取值范围,由中间变量的取值范围求出y的取值范围;最后根据y的取值范围直接写出原函数最值.这种求其复合函数最值的方法简单易行,笔者把它命名为分解函数法.

例1(2014・天津)已知函数f(x)=cosx・sinx+π3-3cos2x+34,x∈R.

(Ⅰ)求f(x)的最小正周期;

(Ⅱ)求f(x)在闭区间-π4,π4上的最大值和最小值.

解f(x)=cosx・sinx+π3-3cos2x+34=cosx・12sinx+32cosx-3cos2x+34

=12sinxcosx-32cos2x+34=14sin2x-34cos2x=12sin2x-π3.

全文阅读

三角函数值域的求法

摘要:本文是对三角函数的值域求法的简单小结,除了利用已经学过的函数值域求法外,从三角函数自身的特点也能得出一些它独特的求法

关键词:三角函数;值域;求法

一、可化为y=asin(ωx+φ)+b(ω>0)型

例1 求y=sin2x+2sinxcosx+3cos2x的值域.

解: y=1-cos2x2+sin2x+3·1+cos2x2

=sin2x+cos2x+2

=2sin(2x+π4)+2

y∈[2-2,2+2]

全文阅读