开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
《化学工业与工程技术杂志》2014年第二期
1试验
1.1试剂及仪器试剂:氧化钙、D-葡萄糖酸钠、十二烷基磺酸钠、邻苯二甲酸二辛酯(DOP)、乙醇(以上均为分析纯);二氧化碳气体(工业纯);去离子水(实验室自制)。仪器:数显恒温磁力搅拌器。
1.2试验方法
1.2.1类球状纳米碳酸钙的制备取一定量的CaO粉末置于盛有100mL去离子水的烧杯中,恒温60℃下充分搅拌3h、陈化12h后,加入计量添加剂D-葡萄糖酸钠,于搅拌条件下通入CO2气体,至溶液pH值达到7时停止反应,抽滤、洗涤、60℃下恒温干燥、研磨、100目筛分,得粉末状碳酸钙试样。以碳酸钙的粒径和形貌为参考指标,通过对反应温度、搅拌转速,晶形控制剂用量、Ca(OH)2初始质量分数、CO2气体流速等反应条件的控制,确定类球形纳米碳酸钙最佳的合成工艺条件。
1.2.2类球状纳米碳酸钙的改性以十二烷基磺酸钠为改性剂,采用湿法对制备的碳酸钙进行改性。取一定量的碳酸钙粉末置于盛有100mL去离子水的三口烧瓶中,配成质量分数8%的碳酸钙悬浊液,加入计量改性剂,三口烧瓶置于水浴锅中对其进行改性。改性后抽滤,70℃下烘干,100目筛分,得改性碳酸钙试样。以吸油量为参考指标,通过对改性剂用量、改性温度、改性时间等反应条件的控制,确定类球状纳米碳酸钙最佳改性工艺条件。
1.3试样的分析表征
1.3.1透射电子显微镜(TEM)采用日本Hitachi公司H-800型透射电子显微镜对试样的形貌和分散性进行测定。取试样用乙醇超声分散后,用毛细管滴加到铜网上,红外灯干燥后测试。
《包装与食品机械杂志》2015年第一期
1试验过程
取表面积S为160cm2的样品,按每cm2加1mL食品模拟液,将样品全浸泡于容器内,即浸泡液体积V为160mL。试验分别采用饮用纯净水、4%乙酸液、20%乙醇和正己烷作为模拟液,在20℃,40℃和70℃水浴锅中浸泡,浸泡时间分别为0.5h,1h,2h,4h和6h。后移取50mL浸泡液,蒸干,用1mL硝酸消解残渣,后用饮用纯净水定容至50mL,用火焰原子吸收法测定消解液中钙浓度(C:mg/L),原子吸收光谱仪工作条件见表1。钙的迁移量W按下式计算。
2试验结果与讨论
2.1纳米碳酸钙分布形态
对纳米碳酸钙保鲜盒进行切割,表面去毛刺,然后利用扫描电镜观察纳米碳酸钙在其中的形态分布,结果发现颗粒常以团聚物形态存在,如图1,产品中纳米颗粒的粒径基本处于10μm级,远远高于纳米碳酸钙原料60nm水平,且极不均匀。分析认为造成颗粒团聚的主要原因是纳米颗粒比表面积大,表面能高,处于能量的不稳定状态,极易通过团聚达到稳定状态,团聚消弱了纳米颗粒填充的增强作用[8]。要得到分散性好、粒径小的填充状态,必须削弱或减小纳米作用能。目前一般采取机械分散法,即通过机械力把颗粒聚团打散,或者通过加入分散剂、干燥处理等方式。另外成分对纳米颗粒的团聚也有一定影响,成分越均匀,纯度越高,团聚的趋势越低。如图2、图3所示,纳米碳酸钙颗粒中镁、铝、硅等杂质,进一步加剧了颗粒团聚趋势。
2.2迁移特性分析
由图4可以看出,在相同温度下,随着浸泡时间延长迁移量有所增加,相同浸泡时间下,浸泡温度升高,迁移量增大。分析认为:纳米碳酸钙填料分散在塑料制品中,两者之间没有紧密的化学结合键,高温、长时间浸泡消弱了两者之间结合力,导致碳酸钙向模拟物迁移趋势增大。图5是纳米碳酸钙在20%乙醇浸泡液中的迁移情况。在相同温度下,随着浸泡时间延长,迁移量缓慢增大,浸泡温度升高,迁移量明显增大。分析认为:温度升高使得乙醇浸泡液浓度升高,乙醇对PP的溶胀作用增强,导致碳酸钙颗粒与塑料之间的结合力减弱,颗粒更易于迁移。纳米碳酸钙在正己烷中的迁移特性与在20%乙醇中类似,如图6所示。浸泡温度偏高时,时间对迁移量的影响较为显著。由图7可见,迁移量随浸泡温度、浸泡时间的增大而增大,但浸泡时间对迁移量的影响较为显著。分析认为:碳酸钙颗粒易溶解于乙酸,属于化学反应,并随着温度升高,时间延长,该溶解反应加剧,表现为迁移量不断增大。由图8可见,在相同温度和时间条件下,4种模拟物中纳米碳酸钙迁移量大小依次为:4%乙酸>正己烷>20%乙醇>水,即酸性食物>油性食物>酒类食物>水性食物。4%乙酸本身对无机填料有溶解作用,且随着温度升高,酸溶反应会更快,所以碳酸钙在酸性模拟物中浓度远远高于其它模拟物;另外根据相似相溶原理,正己烷作为油性模拟物,是有机非极性物质,聚丙烯也为有机非极性材质,两者之间存在溶胀作用,聚丙烯在正己烷溶液中溶胀后,包裹其中的纳米碳酸钙颗粒被释放出来,因此正己烷模拟液中迁移量相对较高。虽然酒精也属于有机物质,但与水一样属于极性物质,碳酸钙溶解能力相对较小。纳米碳酸钙在溶胀或溶解同时,也存在扩散行为,根据扩散的菲克理论,扩散量与温度、时间成正方向关系。
【摘要】本文主要围绕着纳米碳酸钙的应用展开探讨,分析了纳米碳酸钙在外墙涂料中的应用现状,探讨了纳米碳酸钙应用的未来发展趋势,以及应用的要点。以期可以为纳米碳酸钙的应用提供参考。
【关键词】纳米碳酸钙;外墙涂料;应用
中图分类号:O434文献标识码: A
一、前言
纳米碳酸钙在各行业都有一定的应用,其中,外墙涂料作业中,纳米碳酸钙也有着广泛的应用,为了提高纳米碳酸钙在外墙施工中的应用效果,必须要分析其应用的方法和要点。
二、纳米碳酸钙概述
纳米碳酸钙是一种附加值很高的专用功能型无机材料,具有低成本、高性能、无毒无味等特点, 作为一种优质填料和白色颜料, 广泛应用于橡胶、塑料、涂料、油墨、造纸、医药等众多领域。采用机械化学合成的纳米碳酸钙商业产品与普通碳酸钙产品相比, 纳米碳酸钙具有粒子细、比表面积大( 可达10~ 70m2 /g)、高表面活化率、高补强性、高白度、触变性好等特点, 是目前能够工业化生产与应用的纳米材料之一, 可取代价格昂贵的白炭黑和钛白粉, 具有广阔的市场前景。
三、纳米材料的特性及应用
摘要:选取四种不同粒度的活性纳米碳酸钙,加入到70号基质沥青中。通过高速剪切仪加工,改性后的沥青与基质沥青进行三大指标以及针入度指数对比分析,证明纳米材料的加入有效的改善了沥青的温度敏感性和软化点,延度性能和基质沥青差别不明显,其中粒径为80nm的活性碳酸钙与沥青相容性最好,其改性沥青是最佳的共混体系。
关键词:纳米 改性沥青高速剪切 共混体系
中图分类号:TU535 文献标识码: A
引言
纳米材料因其小尺寸效应;量子尺寸效应;宏观量子隧道效应以及表面效应等特殊的性能,对原材料的性能有极大的改善提高,已然成为了世界各国最活跃的研究课题之一。纳米材料在我国发展势头迅猛,形成了以北京上海为核心辐射全中国的基本格局。近年来,纳米材料逐渐开始渗透到交通、水利、土建等工程材料领域。2008年,RILEM国际材料与结构协会专门成立了纳米沥青技术协会,纳米材料已经为沥青改性打开了一道崭新的大门。
材料的选取与加工
纳米材料按维数可以分为:纳米粒子为代表的零维纳米材料;碳纳米管为代表的一维纳米材料;纳米层状硅酸盐为代表的二维纳米材料;智能金属等纳米块体为代表的三维纳米材料四种。在本次研究中,我们选取价格相对低廉的零维活性纳米碳酸钙材料进行改性。
表2.1 A~C改性材料参数
摘 要:碳酸钙作为一种生物矿物,其具有良好的生物相容性和稳定的化学性质,属于很有前途的无机材料,被广泛应用于医药、油墨、涂料、塑料和橡胶等领域。而纳米碳酸钙则是指粒径保持在1~100nm范围内的碳酸钙产品,其涉及超微细碳酸钙和超细碳酸钙这两种产品,具有宏观量子隧道效应、小尺寸效应和量子尺寸效应,在杀菌消毒、增强透明性与补强性等方面的应用性能较为特殊。本文就对纳米碳酸钙的化学制备方法及应用进行分析和探讨。
关键词:纳米碳酸钙;化学制备方法;应用
纳米碳酸钙是上世纪八十年展起来的新型固体材料,选料为非金属矿石灰石,采用沉淀法合成纳米粉末体的技术来制备纳米材料。随着纳米技术的快速发展,碳酸钙逐步实现了表面改性、结构复杂化以及超细化的发展,应用价值越来越高,在熔点、催化剂、光热组和磁性等方面的优越性日益增强。可以说,纳米碳酸钙产品的应用空间与发展潜力将会越来越大。
一、纳米碳酸钙的化学制备方法
(一)凝胶法
凝胶法主要是以凝胶的一端或两端为依据,让Ca2+和CO32-加以扩散,这样凝胶内部可以生成结晶核,在其位置不变的前提下,能够对晶核的生长与生成进行连续观察,适应于晶体过程的研究。当然对不同的条件加以控制,如添加剂的浓度与种类、pH值、Ca2+和CO32-的浓度、凝胶浓度等,可以得到球霞石型或文石型的碳酸钙。
(二)乳液法
乳液法可以划分为乳状液膜法与微乳液法,其中利用前者来制备纳米CaCO3时,膜溶剂需选用煤油,让司本-80(Span-80)座位流动载体与表面活性剂,这样可以配成水相与油相不相溶的液体混合物,利用电动搅拌器加以搅拌后,这时油相中会分散有微液滴形式Na2CO3水溶液,形成乳液后与Ca(OH)2溶液进行混合搅拌,Ca2+会进入微液滴加以反应,从而生成CaCO3超细颗粒。后者则是在两份完全相同的微乳液中溶入可溶性钙盐与可溶性碳酸盐,在特定情况下混合反应之后,需要对小区域内的晶粒生长与成核进行控制,然后将溶剂与晶粒进行分离,从而得到纳米碳酸钙的颗粒。一般来说,微乳液是由水、油、助表面活性剂、表面活性剂组成的热力学稳定体系。
【摘要】在编织袋生产企业的日常经营管理过程中,塑料编织袋生产中纳米碳酸钙填充母料的应用一直都扮演者越来越重要的作用,并且一直都具有更加广泛的意义,对于我国相关的生产行业来说,塑料编织袋生产中纳米碳酸钙填充母料的应用一直都具有很好的指导性作用,改革开放至今,特别是在我国加入了世界贸易组织以后,我国的各个技术都取得了突飞猛进的发展,经济的全球化也对我国产生了迅速的席卷,我国的信息技术也得到了不错的发展,在整个世界大潮里面,挑战和机遇并存,我国编织袋生产企业所面临竞争的压力不仅仅是在国内中,更加来自于国外,对于我国的编织袋生产企业来说,想要将自身市场竞争力提升,就要求我们必须要将交货期缩短,将产品质量提高,在整个行业里面,我们更加要从降低成本以及增强服务这两个方面入手,将自身的竞争力提升,本文中,笔者就对塑料编织袋生产中纳米碳酸钙填充母料的应用进行分析。
【关键词】编织袋生产企业;纳米碳酸钙;填充母料;地位;作用;分析
有效实现纳米碳酸钙填充母料的应用一直都对编织袋生产企业来说有百利而无一害,能够为编织袋生产企业带来丰厚的社会效益以及经济效益,与此同时,还对我国编织袋生产企业不断发展产生更加深远影响和意义。在过去传统的编织袋生产企业里面,有些问题也能够得到体现,基于这些问题之上,我们必须要想要某些行之有效办法,这也就使得我国编织袋生产企业的塑料编织袋生产中纳米碳酸钙填充母料的应用在现代的编织袋生产企业管理过程中得到更加有效地体现,这就要求我们必须要采取一些措施对其进行完善,下面,笔者就对自身多年的工作经验进行总结,对塑料编织袋生产中纳米碳酸钙填充母料的应用进行探讨。
1.塑料编织袋生产中纳米碳酸钙填充母料应用的意义
进行塑料编织袋生产中纳米碳酸钙填充母料的应用对于我国编织袋生产企业实现自身两个转变具有重要的作用和意义,更加能够使得我国编织袋生产企业逐渐走向整个世界,提升编织袋生产企业在国际市场里面的竞争力和知名度,这些都具有不可替代的意义以及十分重要的作用,因此,笔者认为,对塑料编织袋生产中纳米碳酸钙填充母料的应用进行分析和研究是十分必须要也是相当重要的,在我国诸多现代的编织袋生产企业中,塑料编织袋生产中纳米碳酸钙填充母料的应用之间是相互促进缺一不可的,在当前形势下,企业经济得到了不断发展,有效地实施塑料编织袋生产中纳米碳酸钙填充母料的应用是十分必须要的。最终能够促使我国的编织袋生产企业所需物质供应能够更快捷和更高效,编织袋生产企业的生产和经营也更具有保障,从而将采购成本、时间成本以及资金占用成本等诸多成本大大降低,最终使其能够将自身在编织袋生产企业的追求利润最大化过程中重要的地位进行突出的显示。我国当前形势下不仅仅具有广阔市场前景,更加能够长远的发展,但是,塑料编织袋生产中纳米碳酸钙填充母料的应用这一个新领域又不断面临很多新问题等待我们去解决,伴随着我国不断将改革开放深入,我国也加入到了世贸组织里,类似这样的市场经济又为塑料编织袋生产中纳米碳酸钙填充母料的应用带来了全新的机遇。
2.塑料编织袋生产中纳米碳酸钙填充母料应用的地位
塑料编织袋生产中纳米碳酸钙填充母料的应用主要是对范和高效运转进行供应,这一个运转自身就包括对于编织袋生产企业的用料单位进行全程的控制,编织袋生产企业的纳米碳酸钙填充母料的应用需要我们注意以下内容:塑料编织袋生产中纳米碳酸钙填充母料的应用要求我们必须要建立起一个塑料编织袋生产中纳米碳酸钙填充母料应用的模型,进行塑料编织袋生产中纳米碳酸钙填充母料应用主要是对管理方法和思想进行管理,将应用过程中的各个组成的部分都看作是一个密不可分的整体,对于应用实施管理关键就是要规范运作和制约行之有效,将市场机制引进,应用环节的运作办法、效能监察、机制以及业务部门等等这些方面共同组成了塑料编织袋生产中纳米碳酸钙填充母料应用的模型。还要求我们必须要建立起应用制度管理的模型和体系,对基础应用管理进行强化,塑料编织袋生产中纳米碳酸钙填充母料的有序运作能够提高编织袋生产企业的效益,但是,这些都是依靠系统化制度的模型来对其进行保证的。
3.结语
摘要:本文介绍了碳酸钙的性质分类以及生产制备技术,概述了碳酸钙现有的在国内外应用的情况。
关键词:碳酸钙 性质 应用
1、前言
碳酸钙广泛存在于自然界中,是最常见的生物矿物质,同时也是目前用途最广泛的化工产品,作为一种性能优良的新型功能性纳米填料,被广泛应用于橡胶、塑料、造纸、纺织、涂料、油墨、日用品、医药等工业中,发挥添加剂和补强剂的作用,不仅可以填充增容、节约母料、降低成本,更能改善制品的表面色泽度,提高产品的综合性能。制备碳酸钙产品的原料主要为石灰石,价廉易得,生产过程工艺简单、能耗低,因此该领域已成为国内外研究开发的热点。
2、碳酸钙的性质及其分类
碳酸钙,一种化学性质比较稳定的微碱性无机化合物,是石灰岩(即石灰石)的主要成分,分子式为CaCO3,分子量为100.09,其中CaO占56.03%,CO2占43.97%。常温下微溶于水(Ksp=2.9×10-9),溶解度为0.0014,碳酸钙水溶液的pH值为9.5~10.2,空气饱和碳酸钙水溶液的pH值为8.0~8.6。碳酸钙无毒、无刺激性,通常呈白色,相对密度是2.7~2.9。可与强酸发生剧烈反应,产物为水和相应的钙盐(例如CaCl2)同时放出CO2。
碳酸钙结晶形态常见的为四类:方解石、文石、球霰石和无定形碳酸钙。其中热力学最稳定晶型为方解石,是蛋壳以及某些疾病造成的结石的主要成分;稳定性次之的为文石,因密度是四种晶型中最大的,一般当做工业领域中的填料使用;文石和球霰石属于非稳晶态,它们的能量依次降低,溶解度也依次降低;无定形碳酸钙是碳酸钙的初始状态,在其基础上产生晶核,并进一步稳定增长成为无定形碳酸钙或生成其它晶型的晶体。在溶液体系中,通过长时间的放置,文石、球霰石和无定形碳酸钙皆会转变成最稳定的方解石。
根据不同的标准,碳酸钙有多种分类方式。
论文关键词:无机填料产品品质附加值复合材料材料改性
论文摘要:本文探讨了我国无机填料的生产与应用现状,阐述了我国无机填料工业存在的问题,提出了“提高行业产品品质、增加产品附加值以振兴无机填料工业”的新思路。本文还通过不同材料提升品质前后对复合材料物理性能的变化的实例,论述无机填料品质提升的重要性与可行性。本文最后论述了我国无机填料工业赶超国外先进技术的必须经过的“研、产、用三结合”的途径与方法。
随着橡胶应用领域的扩展,无机填料在橡胶工业中的地位越来越突出。特别是随着现代材料改性技术的发展,很多无机材料被赋予了独特的物理与化学性能,如耐磨性、导电性、导热性、阻燃性、耐腐蚀性、气密性等等。
橡胶工业对被用做填料的矿物无机材料有一定的要求,如颗粒大小,形状和表面性质等。符合这些要求的材料,才能在橡胶工业中发挥应有的作用。
按目前的技术,橡胶中应用的无机填料要求达到如下要求:
1.化学活性不高和橡胶不起化学作用;
2.不影响硫化胶化学性能,即耐侯性、耐酸性、耐碱性和耐水性;
3.不明显降低硫化胶的力学性能;
论文 关键词:无机填料 产品品质 附加值 复合材料 材料改性
论文摘要:本文探讨了我国无机填料的生产与应用现状,阐述了我国无机填料 工业 存在的问题,提出了“提高行业产品品质、增加产品附加值以振兴无机填料工业”的新思路。本文还通过不同材料提升品质前后对复合材料物理性能的变化的实例,论述无机填料品质提升的重要性与可行性。本文最后论述了我国无机填料工业赶超国外先进技术的必须经过的“研、产、用三结合”的途径与方法。
随着橡胶应用领域的扩展,无机填料在橡胶工业中的地位越来越突出。特别是随着 现代 材料改性技术的 发展 ,很多无机材料被赋予了独特的物理与化学性能,如耐磨性、导电性、导热性、阻燃性、耐腐蚀性、气密性等等。
橡胶工业对被用做填料的矿物无机材料有一定的要求,如颗粒大小,形状和表面性质等。符合这些要求的材料,才能在橡胶工业中发挥应有的作用。
按目前的技术,橡胶中应用的无机填料要求达到如下要求:
1. 化学活性不高和橡胶不起化学作用;
2. 不影响硫化胶化学性能,即耐侯性、耐酸性、耐碱性和耐水性;
3. 不明显降低硫化胶的力学性能;
1纳米技术简介
(1)特殊的力学性质:常规陶瓷材料呈脆性,而纳米超微颗粒制成的纳米陶瓷材料具有良好的韧性,这是因为纳米超微颗粒制成的固体材料具有较大的界面,界面原子排列混乱,原子在外力变形条件下容易迁移,表现出一定的延展性。
(2)特殊的磁性:研究表明小尺寸超微粒子的磁性比大块材料强许多倍,当尺寸进一步减小时(小于6nm)时,其矫顽力反而又下降到零,表现出超顺磁性。利用这些特点,可制作高存储密度的磁记录粉,如磁带、磁盘、磁卡等。其次,表面效应-———表面效应是指纳米粒子的表面原子数与总原子数之比随着纳米粒子尺寸的减小而大幅度增加,由于表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。第三:量子尺寸效应。第四:宏观量子隧道效应———它限定了磁带,磁盘进行信息储存的时间极限等。
2纳米技术在造纸工业的应用
纳米技术主要是纳米材料的应用,可使纸张的填料、胶料和色料的聚集状态发生很大的变化,导致无论是光学性能、力学性能、阻隔性能、润湿性、导电性、导光性等都发生超常的变化。和制浆造纸中有关的是纳米化学和纳米材料学,它可能会对造纸工业的发展造成新的飞跃,使印刷品的品质将再次提高。
2.1纳米技术在造纸行业原材料及制浆过程中的应用
根据目前的技术水准和纸张的实际应用,木纤维只能加工到微米(100~1000nm即0.1~1um)的水准,由于木材的细胞直径相对较粗,通过木材纳米技术可以改变木材的细胞结构和控制细胞的生长,就可能改变木材的特性,从而向有利于制浆造纸的原材料方向生长。对于绝大多数木材来说,当纤维加工到微米级后,木材细胞的胞管已经全部破开,胞管内的粘性液体容易流出,而若将木材加工到纳米级,木材原来的细胞结构将被破坏,纤维组织结构发生变化,纤维素、半纤维素和木素可在机械法制浆过程中用机械法分离,这样机械制浆后就可以不必再用化学方法提取胞管内的有害液体和分离纤维,这样就可以大大提高制浆率和降低制浆造纸工业对环境的污染。
2.2纳米粉体在造纸业的应用