首页 > 范文大全 > 正文

异氟烷对间歇缺氧静脉内皮细胞的保护作用研究

开篇:润墨网以专业的文秘视角,为您筛选了一篇异氟烷对间歇缺氧静脉内皮细胞的保护作用研究范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

[摘要] 目的 探讨异氟烷间歇缺氧(IH)人脐静脉内皮细胞的作用。 方法 HUVEC和EAhy926细胞分为对照组、模型组及1%、1.5%、2%异氟烷预处理组,测定细胞活力、乳酸脱氢酶(LDH)和超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量和谷胱甘肽(GSH)水平,采用Real-time PCR和Western blot法检测低氧诱导因子(HIF-1α)和核转录因子-B(NF-κB)的表达。 结果 与对照组比较,模型组细胞活力、SOD活性和GSH水平降低,LDH活性、MDA含量、HIF-1α和NF-κB表达升高,差异有统计学意义(P < 0.05或P < 0.01)。与模型组比较,异氟烷预处理组的细胞活力、SOD活性、GSH水平和HIF-1α表达,增加LDH活性、MDA含量和NF-κB表达降低,差异有统计学意义(P < 0.05或P < 0.01)。 结论 异氟烷能清除细胞氧自由基,上调HIF-1α表达,下调NF-κB表达,提示其能降低IH引起氧化应激和炎性反应,减轻内皮细胞IH损伤。

[关键词] 异氟烷;人脐静脉内皮细胞;间歇缺氧;氧化应激;炎症

[中图分类号] R614.2 [文献标识码] A [文章编号] 1673-7210(2016)04(c)-0028-05

[Abstract] Objective To study the effect of isoflurane on intermittent hypoxia (IH) injured human umbilical vein endothelial cells. Methods HUVEC and EAhy926 cells were divided into control group, model group, 1%, 1.5%, 2% Isoflurane pre-treatment group. Cell viability, MDA and GSH levels, LDH and SOD activities, and HIF-1α and NF-κB expressions were tested by MTT assay, expression of MDA, LDH, SOD and GSH were tested by Real-time PCR and Western blot, respectively. Results Compared with control group, the cell viability, SOD activity and GSH level decreased, LDH activity and MDA level, and expression of HIF-1α and NF-κB increased in model group cells, the differences were statistically significant (P < 0.05 or P < 0.01). Compared with model group, the cell viability, SOD activity, GSH level and HIF-1α expression increased, MDA level, LDH activity and NF-κB expression decreased, the differences were statistically significant (P < 0.05 or P < 0.01) Conclusion Isoflurane protects human umbilical vein endothelial cells from IH injury by scavenging free radical and reducing oxidative stress and inflammation.

[Key words] Isoflurane; Human umbilical vein endothelial cells; Intermittent hypoxia; Oxidative stress; Inflammation

阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome,OSAS)是睡眠时上呼吸道反复阻塞的一种疾病[1],为高血压、冠心病和心肌梗塞等诸多心脑血管疾病相关的独立危险因素[2-3],二者关系的研究逐渐成为目前研究热点。间歇缺氧(intermittent hypoxia,IH)导致的氧化应激和炎性反应造成的血管内皮损伤是OSAS引起心脑血管疾病的主要原因之一[4]。临床常用异氟烷可抑制氧自由基生成,降低脏器缺血再灌注损伤[5],但其对细胞IH的作用鲜见报道。本研究探讨异氟烷对IH脐静脉内皮细胞的作用。

1 材料与方法

1.1 实验试剂

人脐静脉内皮细胞HUVEC和EAhy926(中科院上海细胞生物学研究所);DMEM培养基(Hyclone公司);胎牛血清(FBS)(Gibco公司);BCA试剂盒、白提取试剂盒、乳酸脱氢酶(LDH)试剂盒、丙二醛(MDA)试剂盒、超氧化物歧化酶(SOD)试剂盒和谷胱甘肽(GSH)试剂盒(南京建成生物工程研究所);抗体(Santa Cruz公司);PVDF膜和ECL化学发光试剂(Millipore公司);TRIzol试剂盒和逆转录试剂盒(Invitrogen公司)。

1.2 分组及处理方法

HUVEC和EAhy926细胞分为对照组、模型组和1%、1.5%、2%异氟烷预处理组。对照组细胞正常培养;IH模型细胞参照Hoffmann等[6]的方法,于5% CO2和95% N2(O2

1.3 MTT法测定细胞活力

细胞以1×105个/mL接种于96孔板,同“1.2”项方法培养,加5 g/L MTT 20 μL培养4 h,弃培养基后加DMSO 150 μL溶解结晶。用全自动酶标仪检测490 nm吸光度。重复3次。

1.4 GSH水平、LDH活性及MDA含量测定

细胞培养液离心后取上清,按相应试剂盒说明书测GSH水平、LDH活性和MDA含量,重复3次。

1.5 SOD活性测定

细胞用0.25%胰酶消化,离心,PBS溶解沉淀,超声破碎,按SOD试剂盒说明书测SOD活性,重复3次。

1.6 Real-time PCR检测

TRIzol法提取细胞总RNA,逆转录合成cDNA,定量PCR扩增,扩增体系:SYBR Premix Ex TaqⅡ 10 μL,上下游引物各0.5 μL,2 μL cDNA,ddH2O 7 μL。反应条件:94°C,2 min;94°C,30 s;62°C,30 s,30个循环;72°C,5 min。低氧诱导因子(HIF-1α)上下游引物为5'-ATCTGAGGACACGAGCTGCCT-3'和5'-CAGAAGGACTT-GCTGGCTGATC-3',产物368 bp;核转录因子-B(NF-κB)上下游引物为5'-CTGATGTGCACCGACAAGTGG-3'和5'-GTT-GATGGTGCTC-AGGGATGAC-3',产物353 bp。各样品复管2次。β-actin为内参。基因表达量由2-ΔΔCt法获得。

1.7 Western blot检测

Trizol抽提细胞总蛋白,用白提取试剂盒提取白,BCA法测蛋白浓度。10 μg蛋白经10% SDS-PAGE分离并转膜,封闭1 h,分别加入HIF-1α、NF-κB、GAPDH或TBP一抗,4℃孵育过夜,洗膜,加二抗,室温孵育2 h,GAPDH为HIF-1α的内参,TBP为NF-κB的内参,用ECL系统进行化学发光和观察。重复3次。

1.8 统计学方法

采用统计软件SPSS 22.0对数据进行分析,正态分布的计量资料以均数±标准差(x±s)表示,多组间比较采用方差分析,两两比较采用LSD-t检验。以P < 0.05为差异有统计学意义。

2 结果

2.1 异氟烷增加IH内皮细胞存活力,降低LDH活性

与对照组比较,模型组吸光度值降低,LDH活性均升高,差异有高度统计学意义(P < 0.01)。与模型组比较难,随着异氟烷浓度的增加吸光度值增加,LDH活性下降,差异有统计学意义(P < 0.05)。

注:与对照组比较,##P < 0.01;与模型组比较,*P < 0.05,**P < 0.01;LDH:乳酸脱氢酶

2.2 异氟烷降低IH内皮细胞MDA含量

与对照组比较,模型组MDA含量增加,差异有高度统计学意义(P < 0.01)。与模型组比较,随着异氟烷浓度的增加MDA含量降低,差异有统计学意义(P < 0.05)。见表2、图2。

2.3 异氟烷升高IH内皮细胞SOD活性和GSH水平

与对照组比较,模型组培养基中SOD活性和GSH水平显著降低,差异有高度统计学意义(P < 0.01),异氟烷预处理显著升高SOD活性和GSH水平,差异有统计学意义(P < 0.05),且随着异氟烷浓度的增加SOD活性和GSH水平均升高。见表3、图3。

2.4 异氟烷对IH内皮细胞HIF-1α和NF-κB表达的影响

qRT-PCR和Western blot结果表明:与对照组比较,模型组HIF-1α和核内NF-κB均高表达,差异有高度统计学意义(P < 0.01)。与模型组比较,随着异氟烷浓度的增加内皮细胞HIF-1α mRNA和蛋白表达均显著升高,差异有统计学意义(P < 0.05),而NF-κB mRNA和蛋白表达显著降低,差异有统计学意义(P < 0.05)。见图4、5。

3 讨论

OSAS机体处于IH环境中,产生大量氧自由基,形成氧化应激状态[7]。OSAS可导致诸多心脑血管疾病,病理基础是血管内皮受损,而IH是引起血管内皮受损的核心环节[8]。本实验用HUVEC和EAhy926细胞IH模拟OSAS IH,模型组吸光度降低,LDH活性升高,表明细胞氧化呼吸功能受损,细胞膜通透性增加。

全身麻醉后OSAS患者术后呼吸系统并发症风险很高[9]。麻药的选择对OSAS患者的安全至关重要。异氟烷是临床常用挥发性卤代[10],具有抗氧化的特性,保护细胞DNA损伤[11]。异氟烷预处理对多种器官可产生保护作用。据报道,异氟烷对脑[12]、心脏[13]、心肌[14]、肾[15]、肝和肺[16]等器官缺血再灌注损伤均有保护作用。鉴于缺血再灌注与IH有相似之处,本研究探讨异氟烷对IH内皮细胞的作用,发现异氟烷预处理可降低细胞IH损伤。血管内皮细胞功能异常是引发心血管疾病的关键,内皮细胞缺氧可产生大量活性氧,损伤血管。异氟烷可提高IH脐静脉内皮细胞SOD活性和GSH水平,降低氧自由基,保护细胞。

OSAS合并心脑血管疾病发病机制复杂,NF-κB依赖的炎性通路和HIF-1依赖的适应性通路尤为重要[17-18]。NF-κB在胞浆内与IκB结合,无活性;受到炎症介质和应激反应等刺激后解离,NF-κB活化入核,促进炎症因子转录。据报道IH可升高EAhy926中NF-κB表达[19]。HIF-1广泛存在于人和哺乳动物细胞内,低氧时才稳定表达[20],能激活200多个基因调控缺氧应答[21]。HIF-1由受缺氧调控的HIF-1α和细胞内稳定表达的HIF-1β组成,只有二聚体才能发挥作用。缺氧时HIF-lα表达增多,与HIF-1β结合入核,激活促血管内皮生长因子、促红细胞生成素和一氧化氮合酶等基因转录[22]。HIF-1α可降低缺血再灌注损伤中线粒体氧化应激的产生,其下游效应因子已糖激酶Ⅱ也可阻止缺血再灌注损伤造成的线粒体功能障碍[22]。结果发现:IH HUVEC和EAhy926细胞HIF-1α和核内NF-κB表达升高,而异氟烷预处理能够升高细胞HIF-1α表达,降低NF-κB表达,提示其可抑制氧化应激所致的炎症损伤。

综上所述,异氟烷可降低细胞IH损伤,为其用于OSAS患者的麻醉提供依据。然而异氟烷在降低细胞IH损伤的同时,是否有其他副作用,还有待深入研究。

[参考文献]

[1] Mannarino MR,Di Filippo F,Pirro M. Obstructive sleep apnea syndrome [J]. Eur J Intern Med,2012,23(7):586-593.

[2] Destors M,Tamisier R,Baguet JP,et al. Cardiovascular morbidity associated with obstructive sleep apnea syndrome [J]. Rev Mal Respir,2014,31(4):375-385.

[3] 王鹏举,李江平.氧化应激反应在OSAHS伴原发性高血压中的作用[J].临床耳鼻咽喉头颈外科杂志,2014,28(9):604-606.

[4] Seif F,Patel S R,Walia H,et al. Association between obstructive sleep apnea severity and endothelial dysfunction in an increased background of cardiovascular burden [J]. J Sleep Res,2013,22(4):443-451.

[5] Baotic I,Weihrauch D,Procknow J,et al. Isoflurane favorably modulates guanosine triphosphate cyclohydrolase-1 and endothelial nitric oxide synthase during myocardial ischemia and reperfusion injury in rats [J]. Anesthesiology,2015,123(3):582-589.

[6] Hoffmann M S,Singh P,Wolk R,et al. Obstructive sleep apnea and intermittent hypoxia increase expression of dual specificity phosphatase 1 [J]. Atherosclerosis,2013,231(2):378-383.

[7] Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia--revisited--the bad ugly and good:implications to the heart and brain [J]. Sleep Med Rev,2015,20:27-45.

[8] Lopez-Jimenez F,Sert Kuniyoshi FH,Gami A,et al. Obstructive sleep apnea: implications for cardiac and vascular disease [J]. Chest,2008,133(3):793-804.

[9] Xara D,Mendonca J,Pereira H,et al. Adverse respiratory events after general anesthesia in patients at high risk of obstructive sleep apnea syndrome [J]. Braz J Anesthesiol,2015,65(5):359-366.

[10] Braz MG,Braz LG,Freire CM,et al. Isoflurane and Propofol contribute to increasing the antioxidant status of patients during minor elective surgery: a randomized clinical study [J]. Medicine (Baltimore),2015,94(31):e1266.

[11] Rocha TL,Dias-Junior CA,Possomato-Vieira JS,et al. Sevoflurane induces DNA damage whereas isoflurane leads to higher antioxidative status in anesthetized rats [J]. Biomed Res Int,2015,2015:264971.

[12] Fang Li Q,Xu H,Sun Y,et al. Induction of inducible nitric oxide synthase by isoflurane post-conditioning via hypoxia inducible factor-1alpha during tolerance against ischemic neuronal injury [J]. Brain Res,2012,1451:1-9.

[13] Agnic I,Vukojevic K,Saraga-Babic M,et al. Isoflurane post-conditioning stimulates the proliferative phase of myocardial recovery in an ischemia-reperfusion model of heart injury in rats [J]. Histol Histopathol,2014,29(1):89-99.

[14] Wu W,Zhou X,Liu P,et al. Isoflurane reduces hypoxia/reoxygenation-induced apoptosis and mitochondrial permeability transition in rat primary cultured cardiocytes [J]. BMC Anesthesiol,2014,14:17.

[15] Liang Y,Li Z,Mo N,et al. Isoflurane preconditioning ameliorates renal ischemia-reperfusion injury through antiinflammatory and antiapoptotic actions in rats [J]. Biol Pharm Bull,2014,37(10):1599-1605.

[16] Zhang L,Luo N,Liu J,et al. Emulsified isoflurane preconditioning protects against liver and lung injury in rat model of hemorrhagic shock [J]. J Surg Res,2011,171(2):783-790.

[17] Ryan S,Taylor CT,McNicholas WT. Systemic inflammation:a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome? [J]. Postgrad Med J,2009,85(1010):693-698.

[18] Ryan S,McNicholas WT. Intermittent hypoxia and activation of inflammatory molecular pathways in OSAS [J]. Arch Physiol Biochem,2008,114(4):261-266.

[19] Han Q,Yeung SC,Ip MS,et al. Intermittent hypoxia-induced NF-kappaB and HO-1 regulation in human endothelial EA.hy926 cells [J]. Cell Biochem Biophys,2013, 66(3):431-441.

[20] Tekin D,Dursun AD,Xi L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection [J]. Acta Pharmacol Sin,2010, 31(9):1085-1094.

[21] Ong SG,Hausenloy DJ. Hypoxia-inducible factor as a therapeutic target for cardioprotection [J]. Pharmacol Ther,2012,136(1):69-81.

[22] Yuan G,Khan SA,Luo W,et al. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia [J]. J Cell Physiol,2011,226(11):2925-2933.

(收稿日期:2016-01-23 本文编辑:苏 畅)