首页 > 范文大全 > 正文

某污染场地地下水污染物运移分析

开篇:润墨网以专业的文秘视角,为您筛选了一篇某污染场地地下水污染物运移分析范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:地下水如果受到污染,是对人体健康有毒害作用的,严重了会造成人体健康致癌风险,地下水及水动力是污染物运移的载体及主要动力。文章结合实例对污染场地地下水污染物运移进行了讨论。

关键词:污染场地;地下水;污染物运移

地下水污染健康风险评估是健康风险评估在地下水环境保护治理领域的衍生概念。基于保护人类健康和生态环境的考虑,以地下水质量标准和风险评估的健康基准值为基础,客观、科学地量化评估地下水污染对人体健康和生态环境产生的潜在影响。地下水是人类赖以生存的重要组成部分,非地下水原有物质进入地下水后可能会对地下水造成污染,地下水一旦受到污染,治理和恢复都是非常困难的。因此,应用科学有效的方法进行地下水环境影响评价是非常必要的。

一、地下水健康风险评估方法

1、地下水暴露量的计算

该研究在进行场地地下水健康风险计算中主要考虑的暴露路径为人体直接饮用途径,运用地下水饮用途径暴露量计算公式对污染物在场地地下水中的暴露剂量进行计算,可得到地下水饮用途径污染物暴露剂量。

ADD=(1)

式中,ADD为经口暴露剂量;CW为水中污染物浓度;IR为人的饮水率;EF为暴露频率;ED为暴露持续时间;BW为人的体重;AT为平均暴露时间。

2、场地地下水健康风险计算

根据石油类污染物对人类的不同毒性特点,可将地下水健康风险分为致癌风险和非致癌风险。致癌风险即对人体造成致癌效应的风险,一般认为没有剂量阈值,只要有微量存在,即会对人体产生不利影响。根据美国国家环保局(EPA)推荐值可知,当致癌风险值大于10-6时,表示污染物致癌风险超过可接受水平;非致癌风险则指对人体造成非致癌效应的风险,一般认为有剂量阈值,低于阈值则认为不会产生不利于人体健康的影响。当非致癌风险值大于1时,表示污染物非致癌风险超过可接受水平。对于一种污染物质,可能既具有致癌风险,又具有非致癌风险,这时应分别对其计算致癌风险及非致癌风险。

地下水污染物的致癌风险模型计算:

R 1 =ADD×SF(2)

式中,R1为致癌风险(无量纲);SF为致癌斜率因子;ADD为致癌污染物地下水饮用暴露量。其中,当R1值大于10-6时,表示污染物致癌风险超过可接受水平,需要进行修复。

地下水污染物的非致癌风险模型计算:

R2=(3)

式中,R2为非致癌风险(无量纲);RfD为经口摄入污染物参考剂量;ADD为非致癌污染物地下水饮用暴露量。其中,当R2值大于1时,表示污染物非致癌风险超过可接受水平,需要进行修复。

二、实例研究

评价区位于工业园区内,地理坐标为东经119°38'―119°40',北纬45°26’―45°27'。地貌属山前冲洪积地貌,地形起伏较大。地层上部为第四系冲洪积、风积细砂及沙砾石层,下部为凝灰质胶结的沙砾层。所在含水层为松散岩类孔隙与基岩风化带孔隙裂隙潜水含水层(组),含水层岩性为含砾粉细砂、砾石、凝灰岩等,厚度25―35m,水位埋深2―5m,导水系数(T)59.81―259.2m2/d,渗透系数(K)3.15―8.64m/d。通过上述分析,模拟评价区的水文地质概念模型可以概划成非均质、各向同性、二维非稳定流地下水流系统。

1、数学模型的建立

评价范围内水流状态符合达西定律,利用有限差分法或有限单元法进行数值求解。本次模拟把包含模拟评价区的矩形区域在二维平面上剖分成125×125=15625个网格单元,其中模拟评价计算区6607个单元,共6个区。

2、模型的识别和验证

模型的识别与检验过程是整个模拟中极为重要的一步,通常要经过反复修改参数和调整某些源汇项的过程才能达到较为理想的拟合效果。模型的识别与检验过程采用的方法称为试估――校正法,属于反求参数法。通过反复调整参数和均衡量,识别水文地质条件,确定模型的结构、参数和均衡要素。最终确定了各个分区的水文地质参数如表1所示。

表 1 模拟评价区含水层参数

识别后的含水层水文地质参数

分区编号 参数值 分区编号 参数值

渗透系数(m/d) 给水度 渗透系数(m/d) 给水度

1 6.8 0.25 4 4.5 0.15

2 4.5 0.15 5 3.5 0.18

3 6 0.2 6 7.5 0.2

3、溶质运移影响因素及模拟时间段的确定

根据污染源特点,本次污染物预测评价过程不考虑污染物在含水层中的吸附、挥发、生物化学反应,只考虑运移过程中的对流、弥散作用。模拟时段确定为自泄漏时间点起30年,共计10950天,设定渗漏时间起点为2011年1月。

4、污染物质的确定

大修渣成分复杂,并非只有一种污染物,而是存在一种主要污染物和多种次要污染物,根据大修渣取样进行的相关浸出试验结果,确定大修渣主要污染物为氟,浓度为300mg/L。

5、模拟结果分析

1)非正常工况无防渗措施情景预测

根据评价区污染物浓度大小,对氟污染物进行预测分析,特征污染物氟的污染羽在弥散、对流综合水动力作用下,逐渐向东南方向迁移出污染场地并向下游运移,污染羽的面积逐渐增加,浓度由于水流的稀释在逐渐降低。100d后,影响范围为91721m2,超标范围64166m2,最大运移距离239.9m,最大超标倍数约93.4倍(对应的浓度为93.4mg/L);1000d后,影响范围为468101m2,超标范围243355m2,最大运移距离713.8m,最大超标倍数约17.1倍(对应的浓度为17.1mg/L);10000d后,污染羽的最大浓度为0.12mg/L,远远小于限值,所以不存在超标现象,但存在影响范围,面积为311649m2,预测结果详见表2。

表 2 地下水中氟污染预测结果

污染年限 影响范围(m2) 超标范围(m2) 最大运移距离(m) 最大超标倍数 最大浓度mg/L

100天 91721 64166 239.9 93.4 93.4

1000天 468101 243355 713.8 17.1 17.1

10000天 311649 - 829.4 - 0.12

2)非正常工况有防渗措施情景预测

有防渗措施,污染物仅通过防渗层破损点渗漏,进入地下水的污染物总量急剧减少,浓度将大大少于无防渗措施下的浓度。根据无防渗措施的预测结果来看,在非正常工况采取防渗措施时,下游厂区边界地下水污染物浓度变化差异显著,各污染物达到稳定浓度的值远小于检测下限。地下水污染程度明显减弱,均未超出检测下限。

结论

综上所述,虽然污染场地砂卵砾石层能对污染物起到一定的吸附和净化作用,但由于其渗透性很大,在污染物浓度超标很大的情况下不能有效地吸附,超标的污染物会随地下水向下游运移。在有防渗膜的前提下,污染物的扩散、迁移路径被有效地阻滞,当污染物扩散至砂卵砾石层及其下部地层时,浓度已明显减小,水平扩散范围及侵入深度也明显减小,因此不会对污染场地下游区域地下水水质产生影响。

参考文献

[1]王克三。地下水污染及其监测治理问题[J].水文地质工程地质,2009

[2]汪珊。长江三角洲地区地下水环境质量评价[J].水文地质工程地质,2011

[3]卢文喜。地下水运动数值模拟过程中边界条件问题探讨[J].水力学报,2009