首页 > 范文大全 > 正文

半导体制造系统(FAB)设备维修策略

开篇:润墨网以专业的文秘视角,为您筛选了一篇半导体制造系统(FAB)设备维修策略范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘 要:根据役龄回退参数的不同取值,建立了半导体设备预防性维修后的平均单位产值模型,利用仿真方法确定最佳预防性维修周期和次数,阐述了役龄回退参数对预防性维修周期的影响和预防性维修对企业增加利润的重要性,对未来的研究工作进行了展望。

关键词:半导体制造系统 预防性维修 役龄回退参数 维修周期

中图分类号: TNT10文献标识码:A 文章编号:1007-3973 (2010) 01-089-03

半导体制造系统是典型的可重入系统,也是最复杂的制造系统之一。目前,大多数半导体设备都是使用BM(事后维修)的办法来处理设备故障,随着维修理论研究的深入,学者发现使用PM(预防性维修)在减少设备发生故障的次数,提高设备的可靠性,增加企业的利润等方面有着重要作用。

设备是企业固定资产的主要组成部分,是企业生产中能供长期使用并在使用中基本保持其实物形态的物质资料的总称。现代设备具有自动化、大型化、集成化、高速化、智能化、连续化等方面的特点,这很大程度增加了维修的难度和费用。研究表明,当前制造系统中设备的维修费用占生产系统运行成本的20% ~30。现代科学技术的飞速发展和市场竞争的加剧给制造企业带来了前所未有的机遇和挑战,企业为了提高自身的竞争力,将不得不考虑生产系统设备故障对生产能力、生产成本、产品质量以及供货期和市场占有率的影响。在日常生产中,由于对经济效益的追求,很多厂商盲目的增加设备的连续工作时间,而忽略了设备的日常维修保养,反而导致了设备生产效益低下的结果。而这个特点在半导体生产线上更为突出。

为此,我们在设备的日常生产中引入了有效的措施来减少故障的产生以及由此而导致的停机事件,从而减低了设备的维修成本,增加生产效益,顺利的完成生产任务,这对企业在竞争日益激烈的行业中站稳脚步来说有着举足轻重的作用,可以说,谁掌握了更好的方法,谁就在竞争中取得先机。

维修的发展也是经历了不同的阶段,人们在日常生活中不断积累生产经验,不断的提出新的理论,提高生产效率,从而推动着维修理论不断进步。本文以半导体生产设备平均单位产值最大化为目标建立了优化模型,根据役龄回退参数的五个离散取值,进行故障数和平均单位产值的横向和纵向比较,从而得出半导体设备在不同役龄回退参数下的最佳预防性维修周期。最后总结了役龄回退参数在确定预防性维修周期过程中的作用和预防性维修对企业提高设备性能,增加利有着重大意义。

1点检制策略

点检制是全面维护管理中的重要核心之一。应用这种管理模式,检修不只是维修部门的事情,而且涉及到运行、采购、人力资源以至于行政等部门,检修工作也不仅仅局限于“修理”,而是把工作的重点转换为“维护”,尽可能通过保持设备的良好状态而消灭故障发生的根源,或者把故障消灭在萌芽时期。

1.1半导体生产线特点

在经过过去几年的高速发展之后,我国半导体产业的发展将进入一个相对平稳的发展期,也不排除会进入一个时间长度为2年-3年的结构调整期的可能性。在这个阶段中,我国半导体产业的发展特点为:从主要靠新生产线建设扩大规模转向发掘已有生产线能力扩大规模;继续探索IDM道路;Foundry模式逐渐走向成熟;集成电路设计依然是龙头;SiP技术逐渐成为封装的主流,设备的生产效率将成为制约生产线能力的瓶颈。

半导体生产线的一个重要特点:可重入型。可重入生产系统是指在工件从投入到产出的过程中,需要不止一次的在同一台设备上进行加工的生产制造系统,其显著标记为系统中有处于不同加工阶段的工件在同一台机器前同时等待加工。

典型的可重入生产系统如下图所示:

图1典型的半导体可重入生产系统示意图

1.2故障率修正参数

役龄回退是指设备在经过一次预防性维修后设备的役龄减少的程度,役龄回退参数是一个描述预防性维修效果的参数,比如当役龄回退参数是T的时候,说明进行预防性维修能够使设备变得像新设备一样性能良好,当役龄回退参数是0的时候,说明进行预防性维修没有使设备的性能得到改善,设备的故障率没有发生任何改变。当然,役龄回退参数取T或是0几乎都是不可能的,那么究竟对役龄回退参数改如何定义和表达呢,这也是近些年来学者在研究预防性维修时关注的一个重点。

假设设备在第i 次维修前已运行了T i 时间, 经过维修后, 其性能得以改善, 故障率下降到如同维修前 i 时的故障率, 即经过维修后, 使设备的役龄时间回退到Ti i时刻的状况, 役龄回退量为 i。这种动态变化关系下图所示:

图2故障率与预防性维修间的动态变化关系图

由上图可知道役龄回退参数是一个随机量,目前的研究有将役龄回退参数处理为一个常量,也有用均匀分布来处理,同时也有人提出了役龄因子服从正态分布的说法。

随着设备维修研究的一步一步加深,许多学者也开始了对设备预防性维修的效果进行探讨,提出了关于役龄回退参数的种种假设,也分析了当使用役龄回退参数时我们针对预防性维修周期的确定将更加准确,而且更加符合实际。在文献[4]中,作者假设役龄回退参数是一个均匀分布建立了一个确定预防性维修的模型,在最后假设役龄回退参数是0,T/4,T/2,3T/4,T五种情况,又得到了另几组数值,通过对比两组数值得到了准确使用役龄回退参数能够使我们的预防性维修周期的确定更加准确。

2建立模型

Barlow R, Hunter L. 讨论了简单系统和复杂系统的预防维修策略。他们通过使设备在整个使用寿命期间内的失效损失和维修费用达到最小,从而确定预防维修周期。本文则以单位时间净生产效益最大化为目标的角度出发,在设备有效使用寿命内进行不同的维修次数并考察每次维修程度的不同(故障率修正参数取值),运用单位时间净生产效益最大化为目标建议优化模型,求出设备进行预防性维修的最佳次数。

2.1基本假设

为了使模型简化和研究的方便,在构建模型时做了一下假设:

(1)在没有对设备进行预防性维修的情况下,设备的故障率公式为: (t);

(2)如果在两个预防性维修中间发生小故障,则对设备进行小修,假设每一次小修都能使设备的性能恢复,同时不影响设备的故障率,每一次小修费用为Cf,每一次小修所花费时间为Tf ;

(3)当设备正常运行,单位时间的产值为Cp;

(4)在设备运行时,每隔T时间对设备进行一次预防性维修,每次预防性维修需要时间为Tpm,每一次预防性维修的费用为Cpm。每一次预防性维修能使设备的年龄减少 ,为了更好的描述预防性维修队设备故障率的影响,本文将 处理为一随机变量,其分布函数为G( ),且0

2.2维修决策

常用威布尔分布来描述电子与机械设备的故障规律,假设设备自身的故障率函数用下列公式表示:

(1)

其中m为形状参数, 为尺度参数,t为时间。参数m和 通常都是依靠历史故障数据的分析,利用数理统计的方法估计出的。

有学者在论文[8]中提到半导体设备的故障时间符合参数为m=2.08, =7440的二参数威布尔分布。我们在本章的模型中,使用上面两参数的威布尔分布来描述设备的故障率。引入了役龄回退参数会改善设备的设备性能,设备的故障率公式在不同的预防性维修时间内的表达也是不相同的。在整个预防性维修周期内,设备的故障率递推公式:

(2)

随着设备使用年龄的增加,发生故障的可能性越来越大,在设备的使用过程中对设备进行预防性维修可以减少这种可能性,也就是使得设备的年龄下降。考虑到预防性维修对设备年龄和性能的改善,设备发生故障的次数可以表示为:

(3)

将式1和式2代入到式3可以得到

(4)

形状参数m的大小是用来描述设备故障率的发展趋势,当m>1时表示,设备的故障率是一个增函数,即随着时间的发展,设备发生故障的可能性将是增长的,这也现实设备是一致的,之后,随着m的继续增大,故障率曲线将约往上翘,尺度参数 是用来改变故障率的具体尺度,它使整个故障率缩小 m。这两个参数的获得是通过对设备运行一段时间后,发生故障的次数和每次故障的时间进行描点之后,利用斜率和焦点可以求出。最后得到Fk

(5)

2.3平均单位时间净生产效益Y

(6)

其中Ta是指总的时间,即设备运行的总时间

Cp是指半导体生产线一个小时的生产值

Cpm是指进行一次预防性维修所需要的费用

Cf是指一次故障维修即事后维修所需要的费用

Tpm是指一个预防性维修所占用的时间

Tf是指一次事后维修所需要的时间

k是指在总时间内进行的预防性维修次数

Fk是指对设备进行k次预防性维修时设备总时间内发生的故障次数

3算例分析

取总时间为50000h,一次预防性维修需要的时间为30h,一次事后维修所需要的时间为50h,半导体生产线每个小时的产值为1500元,进行一次预防性维修所需要的费用为10000元,进行一次事后维修的费用为50000元。[9]根据式5我们计算得到的设备故障数Fk,代入到式子6中,利用Matlab程序我们可以得到:

给定不同的故障率修正参数 、不同预防性维修次数k经过多次仿真实验,根据半导体单机设备故障分布确定其最佳预防性维修周期T和预防性维修次数k及其对应单位时间净生产效益Y。仿真结果如图3所示:

图3故障率修正参数不同值时单位时间净生产效益

数据除了说明对设备进行预防性维修可以减少设备的故障数,提高设备的性能,提高企业的生产效益,同时也说明了无论役龄回退参数取何值,都存在理论上的最佳预防性维修周期和次数,最佳预防性维修周期和次数的求得和役龄回退参数的取得有非常大的关系,虽然我们只是在整个周期中取五个均匀的点来得到数据,从而看出发展趋势,但是这已经可以包括其他的情况了。至于对役龄回退参数的深入也是一个重要的话题,比如用平均分布,正态分布来描述,这些都是一些设想,能不能实现还需要进一步讨论,在本文中,由于知识水平有限,只能以离散点来描述役龄回退参数。

4结束语

设备进行预防性维修的时候,维修效果应该是一个随机效果,或是可以用一个区间来表达,认为每次预防性维修的时候,维修效果为T/2的可能性是最大,而0和T是最小的,所以在开始建模的时候,曾经尝试利用正态分布来分析役龄回退参数,但是在建模后进行演示的时候,由于作者的学术水平和没有得到一些具体数据,发现通过自己建立的模型最后得出的一些数据和现实中的一些数据是想违背的,所以只能放弃这种想法,但我深信,对役龄回退参数的深入研究可以使得我们建立起来的模型能够更符合现实需要。

在研究过程,为了使得计算和算法方便,都是使用相同时间来确定每个周期,实际上由于每次预防性维修不能使得设备性能完全恢复,所以设备每个周期的故障数都是一直在增加,这对设备的稳定性来说都是不可取的,有学者曾经提出不同时间周期的预防性维修方法,但未能提出一个准确的解决方法,所以关于不同时间周期的预防性维修策略的建模也是以后继续努力的方向。

参考文献:

[1]潘光, 毛昭勇, 宋保维等. 预防性维修周期优化决策研究[J]. 机械科学与技术, 2007, 26(4): 518-520.

[2]杨文霞. 设备预防性维修及其管理信息系统研究[D]. 南昌 大学, 2005.

[3]张耀辉, 徐宗昌, 李爱民. 设备维修策略与维修决策研究[C]. 应用高新技术提高维修保障能力会议论文集, 2005: 742-746.

[4]徐准备. 以可靠性为中心的设备维修[D]. 西北工业大学, 2006.

[5]功. 半导体设备维修工程务实[J]. 电子工业专用设备, 2000, 29(2): 20-23.

[6]吴启迪, 乔非, 李莉等. 半导体制造系统调度[M]. 北京: 电 子工业出版社, 2006: 11-22.

[7]蒋仁言, 左明健. 可靠性模型与应用[M]. 北京: 机械工业出版社, 1999.

[8]王晓峰. 半导体生产线批处理机调度策略研究[D]. 上海交通大学: 2007.

[9]张颂. 半导体生产线预防性维修周期的研究[D]. 同济大学, 2007.