开篇:润墨网以专业的文秘视角,为您筛选了一篇公路路基与路面设计论文范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
工程设计水平技术深度欠缺
通过工程实践分析,高速公路的工程质量存在诸多质量通病,当然有施工方面的原因,主要存在于设计方面的以下问题:路基土的回弹模量的计算问题:因为对土质的物理指标(含水量、密度、干密度、饱和度、饱和密度、空隙比、孔隙率、)等缺乏实地勘测试验,多以经验加估算设计,极易产生沿线路基的非均匀性沉降及其整体的CBR值准确,从而造成路面结构层的计算不符合行车轴载的实际情况。所以路基的弯沉值计算应该根据路基的干湿类型或80cm深度相对含水量确定路基的回弹模量,再以汽车荷载(附加应力)、路面结构层的恒载(自重应力)计算容许弯沉值是比较合理的,即路基允许弯沉值Lr=k9038E-0.938。式中意义:Lr——设计允许弯沉值(10-2mm);E——路基土的回弹模量(MPa);k——不利季节的影响路基压实度与弯沉值的控制设计问题:传统的理论认为路基分为上路基和下路基两个部分,80cm深度内的上路基属于上路基,是承受汽车轴载与路面恒载的主要受力结构层,以传统JN--150后轴重100KN为参数,按照附加应力的扩展深度80cm计算的,尚未考虑运输超载的个别因素,现在的车轮轴载已经超过该标准很多,一汽重卡或斯太尔车型一般到装载90~100t,斯太尔(191型;后三轴12轮)半挂车,普通载重100~120t,单轴重达到20t,在很多干线公路上超载一倍的车轮都在一半以上,汽车轮胎的标准气压应该是0.7MPa,但实际上已经增大到1.0MPa,以上,经过计算轴载的附加应力、路面结构层恒载的自重应力及不可避免的超载因素已经达到100cm之多,确切地说,路基压实度与弯沉值是因果关系,压实度不足会影响到弯沉值指标不满足路面结构层的承载力需要。因此;为结构层路面设计提供的技术参数偏低而且理论深度不尽全面,缺乏现场勘查理论数据的分析与计算,由于路基的整体强度薄弱也是造成路面结构层早期疲劳破坏的主要原因。对于不同干湿类型的路基,应采用不同的路基回弹模量,根据不同的路基回弹模量计算不同的路面设计弯沉值,不能狭义的以一张图纸设计代表几十公里路基设计的理论用于施工,国外的设计方法见下表1:根据计算得出的不同设计路基弯沉值,可通过路基补强或增加基层厚度取得一致的路基设计弯沉值,在此基础上通过路面结构的双层体系计算相同的路面结构层厚度。
结构层路面设计理念的改进问题
因汽车工业的技术发展与进步使轴载不断增大,而不应以大型车辆的诞生而扼杀运输能力,更说明我国路面结构层的设计的确存在理论缺陷,包括对建筑材料的质量品质以及计算理论存在不切合实际的问题,合理的建筑材料及路面结构层厚度满足路用功能是检验设计理论的标准。基层结构组合问题:尤其高速公路路面结构比较厚,一般厚度在80cm左右,基于路面结构层的低温抗裂性核高温稳定性的使用功能,设计时应该尽量将半刚性基层用做底基层,基层采用柔性基层的设计。柔性基层一般采用乳化沥青稳定大粒径碎石混合料或设计为ATB25~30做基层更为理想。柔性基层的结构特性和强度机理分析;通常采用大沥青碎石混合料做基层,使面层抵抗车辙、防止温差变形有显著作用,与传统的沥青混合料一样,其组成结构为骨架空隙结构、悬浮密实结构及骨架密实结构。骨架空隙结构属于开级配;骨架密实结构属于密级配,一般采用骨架密实结构为多,主要考虑了抗裂性能及坚固抗车辙能力。该结构特点是粗骨料充分形成石子与石子接触的骨架特征,剩余的空隙由少量的细集料、矿粉和沥青填充,因此;具备了良好的骨架稳定度,骨架稳定度指压实成型后的沥青混合料粗集料的体积密度Pcm与松堆密度Pna之比即为骨架密实度S=Pcm/Pna,骨架特性具有较大的内摩阻力和嵌挤力、骨架稳定性及强度衰减慢等特点,很好的抗高温变形能力,该结构更适用于高温或温差大以及重交通地区的基层。柔性基层的力学特点:因组成材料以粒料为主,具有较大的孔隙率,其主要特点不会因温度、湿度的变化引起收缩裂缝,相邻层次产生的裂缝也不会通过柔性基层反射到面层,具有良好的抗裂、防裂、和阻止裂缝扩展的能力。况且由于孔隙率大可及时、迅速的排除进入路面结构内的雨水,减轻沥青面层的水害影响。柔性基层的刚度小于刚性和半刚性基层,一般沥青稳定碎石的回弹模量约为1000Mpa,级配碎石的回弹模量约为500Mpa,因此,在沥青路面结构中沥青面层与柔性基层共同成为承重结构层。
结构层的路面设计原理与数学参数分析
沥青路面结构层的厚度计算公式原理与步骤:根据汽车轴载、轮胎直径与气压,采用双层体系的当量圆计算模式图1。按图解法包括路基在内将路面结构的多层体系换算成为三层体系,采用双层体系的当量圆计算模式,确定轮胎直径与气压,此次分别推算结构层厚度。以双轮组单轴载100KN为标准轴载,对不同车型轴载进行标准的轴载换算,N=∑.C1.C2.ni.(pi/p)4.35;累计当量轴次:Ne=[(1+γ)t-1×365].N.η/γ;轴载换算:N=∑.C1.C2.ni.(pi/p)8;设计弯沉值:Ld=600Ne-0.2.Ac.AS?Ab路面结构层的优化设计的宗旨是:实际弯沉值小于允许弯沉值Ls<Ld,实际弯拉应力小于允许弯拉应力σm<σR,实际剪应力小于允许剪应力τа<τR,合理造价小于最大值及大于最小值;hmin<h<hmax,路面总厚度大于冰冻厚度,H>Ht,根据不同地区气候条件分别设计。高速公路沥青混合料面层一般设计为三层结构,然而考虑到防水必须做封层,根据工程实践,将封层设计在上面层和中面层之间更为合理,一般使用1.5L/m2的改性沥青和铺撒2~3m3/Km2的碎石,粒径在5~10mm之间,通过脚轮压路机稳定后防水效果更好。有关沥青混合料的最大粒径D同路面厚度h的关系,经过大量的工程实践研究表明;随着h/D的增大路面的疲劳耐久性提高,但车辙量增大;反之h/D的减小而车辙量也减小,但耐久性降低,特别是h/D<2时;疲劳耐久性急剧下降,因此;结构层厚度与矿料最大粒径的比值应控制在h/D≥2为宜。<<公路沥青路面施工技术规范>>(JTJF40-2004)规定,对热拌热铺密级配沥青混合料;一层压实厚度不宜小于公称最大粒径的2.5倍,对于高速公路、一级公路不宜小于公称最大粒径的3倍,对于SMA和OGFC等沥青混合料则不应小于公称最大粒径的2.5倍。同时矿料的最大粒径宜从上而下逐渐增大,与结构层的设计厚度相匹配,以保证沥青路面的压实厚度、减少矿料离析。特别提倡沥青混合料实验采用的是GTM法成型试件;提倡同时以米歇尔理论加以验证,最大限度的提高了很合理的密度及相对减少了沥青含量,对路面低温抗裂性核高温稳定性有显著技术改进。
半刚性材料基层7d无侧限强度的设计理论问题
半刚性材料(石灰土或水泥稳定碎石)基层7d无侧限强度设计偏低,与传统的理论概念有关,以前的运输车辆轴载均为单轴载的解放4吨或东风5吨的轻型轴载,而现在的后双轴运输车的轴载和气压经过计算均大于以前的单轴重,加之轮压不均匀受力更为典型,同时轴载之间剪切力更为明显,这就加重了路面基层在施工过程中就遭到了早期破坏,从而降低了路面结构层的早期疲劳破坏,因此应该提高半刚性路面基层的7d强度唯有必要,同时限制超吨位的运输车辆的轴载是保证基层避免早期破坏的根本技术手段。
作者:张磊 单位:河北省高速公路廊坊北三县管理处