首页 > 范文大全 > 正文

关于新节能减排技术与实现IDC机房节能减排\高效安全措施

开篇:润墨网以专业的文秘视角,为您筛选了一篇关于新节能减排技术与实现IDC机房节能减排\高效安全措施范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:近几年随着IDC 迅速发展,具有越来越强的服务器处理能力,越来越大容量的网络设备和存储设备,更多的电能需要消耗,用电成本在企业中急剧上增。为使企业用电成本降低并且实现节能减排,所以必须应用IDC 机房节能减排技术

关键词:IDC机房;节能减排;技术应用;局部热岛;精确送风

Abstract: In recent years, with the rapid development of IDC, with a processing capacity of the server is more and more strong, network equipment and storage equipment is more and more large capacity, more electrical energy consumption, electricity costs in the enterprise more on the rise. In order to make the enterprise electricity cost is reduced and the realization of energy-saving emission reduction, so we must use IDC machine room energy-saving emission reduction technology.

Key words: IDC room; energy saving; application of technology; local heat island; precise air

中图分类号:S210.4文献标识码:A 文章编号:

1 概述

IDC业务属于中国电信重要转型业务之一,近几年发展迅速,规模越来越大,消耗的电能、空调冷量也越来越多。数据中心机房能源需求和能源成本急剧增大,也引起政府与业界的普遍关注。为此,在保障系统设备及客户信息数据安全的前提下,如何提高数据中心机房的管理水平、提高电能利用率、消除机房过热的问题,是许多数据中心面临的严峻挑战。

在此背景下,响应集团及国家节能减排的号召,从2008年至2010年,广东电信分别对IDC机房采用的部分重点空调、电源节能减排技术进行了初步探索 ,如下表所示:

下面将从上表中重点选择一种IDC机房节能减排技术——上送风机房机柜精确送风系统,并对其实际应用情况和节能效果进行详细介绍。

2 上送风机房机柜精确送风节能技术应用

中国电信作为大型电信运营商企业,IDC机房空调的能耗占整个电信机房能耗45%左右,并且原有的大多数IDC机房采用上送风空调系统,空调制冷效率较低,耗能严重。通过对IDC机房内的机柜采用精确送风的制冷模式,将空调冷风直接输送到每个机柜内,使得气流组织更合理,可以提高空调的制冷效率,达到节能减排的目的。

2.1 节能技术特点-先冷却设备后降室温

采用精确送风技术将从空调出来的冷空气直接送到机柜内需要冷却的位置,进入机柜内的冷风温度较低,先直接作用冷却机柜的设备,可以利用较大的温差带走设备热源的热量,提高热交换的效率,将温度相对较高的冷风排到机房中。这时机房环境温度会比采用普通上送风方式下的环境温度高,但机房的环境温度不会对通信设备的冷却有任何影响。

因此,精确送风技术特点是先冷却设备后降室温。

2.2 实际应用

针对上送风空调系统,对机房电能耗高、局部发热严重的广东某IDC机房四楼设备采用了上送风机房机柜精确送风节能减排技术。

下面首先分析IDC机房电能耗高、局部发热严重的原因,然后采取相应的措施,通过实施机柜精确送风节能技术,完成IDC上送风机房机柜精确送风节能减排改造。

2.2.1首先找出电耗高、局部发热严重的主要原因

2.2.2 采取措施

通过上述原因,对不合格项采取针对措施:

2.2.3 实施:

(1)对原有机柜进行送风通道的改造。2楼~4楼共对339个机柜门进行了改造,将原机柜前门改为门式送风器,增加密闭储风结构的送风通道,门式送风器内侧可以附加贴隔热棉,减少热交换损耗。通过门式送风器连接全封闭的冷风进风通道,直接将气送到设备的进风口。

(2)对原有送风管道进行改造。包括改造原有1级风管;增加2级风管和3级风管。1级风管:上送风机房原有的主风管,在1级风管中,通常每隔2至3米设一个风口。2级风管:一端连接1级风管,另1端连接3级风管的一段中间连接风管。3级风管:每个机柜顶部配置与2级风管连接的1段风管。

2.3 节能效果评估

2.3.1 测试

第一步:安装电表测试空调用电。

第二步:采用红外热成像仪测试机柜改造前后的温度分状态,一般情况下,改造前,服务器前门温度入风温度25~27度,这时测试出风温度的分布状态。精确送风改造后,服务器前门温度入风温度13~15度左右。

第三步:再测试出风温度的分布状态。从出风温度的不同可以得出前后两种制冷效果的不同。

机柜改造前,从服务器背面热成像图2-1可以看出,几个机柜的平均出风温度在36度以上,局部热点温度在47度以上,温度有12度~21度的上升幅度。由于外界冷空气是自然流入或服务器自带的风扇吸入,冷风流量小,无法控制送风量,容易形成局部热空气重新吸入服务器的现象,所以,机柜容易形成局部热岛现象。只能依靠增加空调数量、耗费电能、产生较低的室内空气温度来控制局部热岛现象的产生。

机柜经过精确送风改造后,从服务器背面热成像图可以看出,几个机柜的平均出风温度在30度左右,局部热点温度在40度以下,温度有15~17度的上升幅度,每个机柜的温升比较均匀。由于每个机柜可以精确控制送风量的大小,可以很方便的根据设备发热量进行控制,能够有效的防止机柜热岛现象的产生。

2.3.2节能减排效果

测试结果如下表所示:

从上表可见,通过对IDC机房进行精确送风系统改造,能够达到一定的节能减排效果,并且产生一定的经济效益。

2.3.3安全性

由于采用精确送风技术后,IDC 机房中制冷空气的气流组织比较合理,通过精确分配冷量,对于机房内部局部过热的位置可以通过调节风量来加强冷却,有效地消除机房内的局部热岛,提高设备运行的安全性。

通过调节风量消除局部热岛的计算方法如下:一般情况下,传统的上送风机房电信设备机柜发热量是4kVA=3.2kW/架以下。举例以机柜的发热量为3.2kW来计算送风管的送风量。假设送风温度13℃,出风温度28℃,有15℃的温差。

计算公式:Q=G×1.01×T=ρ×V×1.01×T

式中:Q——总显热(假设负载的耗电量90%转化为热量)

G——空气流量,kg/s;V——为系统风量,m3/s;ρ——为干空气密度,1.185kg/m3

系数1.01为干空气的定压比热,kJ/kg.K。

V=Q/(ρ×T×1.01)=3.2×0.9/(1.185×15×1.01)=0.160421m3/s

一般送风管可以有两种形式:梯形及圆形:

梯形面积约为:S=(0.35+0.2) ×0.15/2=0.04125m2

圆形面积约为:S=3.1415 ×0.08^2=0.0201056m2

送风风速:梯形v= 0.160421/0.04125=3.89m/s;

圆形v=0.160421/0.0201056=7.98m/s

由此可见,采用全封闭冷风机柜精确送风时,送风截面积、送风温度一般情况不变,只要改变冷空气的送风风速,就可以满足不同发热量的机柜的散热要求。达到精确控制、精确消除“机房热岛”现象的目的,同时也可以达到少开空调、节约电能的目的。

2.3.4节能技术应用适用范围和建议

在IDC机房采用精确送风系统节能减排技术能够有效地解决了IDC机房不超过8kVA大功率机柜引起的局部过热的难点,提高了制冷效率,降低空调负荷,产生良好的节能效益。

但是,通过在IDC机房的实际应用也发现了该节能技术应

用范围的局限性如下:

(1)上送风机房精确送风系统节能减排技术适用在IDC机柜平均功耗在4kVA/每柜的范围内,如果超过8kVA/每柜,就需要采用其它节能减排技术—大功率服务器机柜制冷节能技术。

(2)上送风机房精确送风系统节能减排技术比较适用于已有的上送风机房空调条件好、机柜间距合适的情况。比如,由于空调压力不够,可能造成机柜节能效果不佳或存在设备宕机的危险。如果机柜间距较小,可能导致机房环境温度较高,人在机房里面工作将感觉到非常的不舒服。改造的2层和4层IDC机房由于机柜间距比较合理,改造后IDC机房温度保持在规定的正常范围之内,而3层IDC机房由于机柜之间的间距只有800mm,机房的温度较高,尽管设备温度保持在正常工作范围之内,但是,人呆在该层IDC机房中能够感觉温度有点不适。

建议:对于新建的IDC机房建议采用下送风空调,同时,采用专用的下送风机柜,以使IDC机房空调达到最佳运行效果,实现idc机房能减排和保证通信设备安全性的最终目的。

3 结语

从上面的分析可见,在IDC机房中采用上送风机房精确送风系统节能减排技术,兼顾了“节能减排”和“安全性”的要求,节能效果明显。当然,IDC机房节能减排技术远远不只上述提到的这种技术,随着IDC机房的业务发展,需要不断研究新的节能减排技术,实现IDC机房节能减排、高效安全的最终目标。

参考文献:

[1]中国电信集团广东公司:《降低省公司ID C机房电能耗》,2010.

[2]广东省电信规划设计院有限公司:《2011年通信电源技术发展蓝皮书》,2010.