首页 > 范文大全 > 正文

高速逆流色谱在天然产物分离中的应用

开篇:润墨网以专业的文秘视角,为您筛选了一篇高速逆流色谱在天然产物分离中的应用范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:高速逆流色谱是一种连续液-液色谱技术,具有无固相载体的优点。现将近年高速逆流色谱在天然产物分离中的应用作一介绍。

关键词:高速逆流色谱;天然产物;应用

中图分类号:O657.7文献标识码:A文章编号:1672-979X(2007)05-0024-04

Application of High-speed Counter-current Chromatography in Isolation of Natural Products

ZHAO Ying

(School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China)

Abstract:High-speed countercurrent chromatography (HSCCC) is one kind of continuous liquid-liquid distribution chromatography with the unique feature of eliminating the use of a solid support. This paper reviews the application of HSCCC in the isolation of natural products.

Key words:high-speed countercurrent chromatography; natural product; application

20世纪80年代,美国国立卫生研究院(National Institutes of Health,NIH)Ito等在液-液分配色谱的基础上发明了高速逆流色谱(high-speed countercurrent chromatography,HSCCC)。HSCCC技术主要有离子对逆流色谱(ion-pair countercurrent chromatography)、pH区带逆流色谱(pH-zone-refining countercurrent chromatography)及多维逆流色谱(multidimensional countercurrent chromatography)[1]。HSCCC是一项高效快速的液-液分配色谱技术,由于该色谱无需固相载体支持,避免了因不可逆吸附而引起的样品损失、变性等问题,特别适用于分离(单离)极性物质和用其他分离方法易引起结构变化的物质。随着方法的改进[2],用该法进行天然产物分离制备的量和纯度都有了极大的提高,国内外已广泛用于生物碱类、黄酮类、苷类等化合物的分离。现对HSCCC及其在天然产物分离中的应用作一介绍。

1HSCCC在天然产物分离中的应用

1.1生物碱类

Liu等[3]用HSCCC,以正己烷-乙酸乙酯-甲醇-水(5:5:7:5,v/v)为溶剂体系,从吴茱萸[Evodia rutaecarpa (Juss.) Benth.]分离纯化得到5个生物碱类化合物,纯度分别为98.7%,98.4%,96.9%,98.0%和97.2%。蒋凯等[4]用HSCCC,以氯仿-甲醇-0.2 mol/ L HCl(10:3:3,v/v)为溶剂系统,从黄花乌头[Aconitum coreanum (Ll.) Rapaics]分离并鉴定了8个C20二萜生物碱。

1.2黄酮类

Zhou等[5]用HSCCC从短瓣金莲花(Trollius ledebouri Reichb.)分离得到2个黄酮苷类、1个未知化合物(纯度均在97.0%以上)和1个部分纯化的组分(纯度为85.1%,随后用半制备型HPLC纯化),其溶剂体系为乙酸乙酯-正丁醇-水(2:1:3,v/v)。土茯苓为百合科菝葜属植物光叶菝葜(Smilax glabra Roxb.)的干燥根茎,Du等[6]用制备型HSCCC对落新妇苷进行分离纯化,一次分离粗提物1.5 g,以正己烷-正丁醇-水(1:1:2,v/v)为溶剂体系,得到落新妇苷和异落新妇苷。利用HSCCC分离的其他黄酮类化合物见表1。

表 1利用HSCCC分离黄酮类化合物

1.3倍半萜

木香是菊科植物木香(Aucklandia lappa Decne)的干燥根,其中广木香内酯和去氢-α-姜黄烯具有抗菌、抗病毒和止痛等作用。Li等[16]用制备型HSCCC,以石油醚-甲醇-水(5:6.5:3.5,v/v)的上相作为固定相,成功分离纯化了广木香内酯和去氢-α-姜黄烯,纯度分别为100%和99.6%。Ma等[17]利用HSCCC从新疆一枝蒿(Artemisia rupestris L.)二氯甲烷提取物中分离得到一枝蒿酮酸,纯度大于98.0%,其中以正己烷-乙酸乙酯-甲醇-水(6:4:3.5:6.5, v/v)的上相和0.5%的醋酸为固定相。Yan等[18]利用HSCCC从姜科植物温郁金(Curcuma wenyujin)根茎的挥发油中成功分离得到吉玛酮和莪术二酮,溶剂系统为石油醚-乙醇-乙醚-水(5:4:0.5:1,v/v),纯度大于95.0%。

1.4醌类

紫草(Lithospermum erythrorhizon Sieb. et Zucc.)含萘醌类色素:紫草素、乙酰紫草素等,Lu等[19]用HSCCC,以正己烷-乙酸乙酯-乙醇-水(16:14:14:5,v/v)为溶剂体系,从52 mg紫草粗提物(含38.9%紫草素)中分离纯化得到紫草素19.6 mg(纯度为98.9%),回收率为96.9%,完成一次分离用时200 min。何首乌为蓼科植物何首乌(Polygonum multiflorum Thunb.)的块根,主要含有蒽醌类、二苯乙烯苷等活性成分,Yao等[20]利用HSCCC分离其乙醚、正丁醇和水的提取物,流动相分别为正己烷-乙酸乙酯-甲醇-水(3:7:5:5,v/v),乙酸乙酯-甲醇-水(50:1:50,v/v)和乙酸乙酯-正丁醇-水(20:1:20,v/v)的下相,共得到9个化合物,纯度均大于97.0%,其中5个是蒽醌类化合物。

1.5苯丙酸类

丹参为唇形科植物丹参(Salvia miltiorrhiza Bge.)的干燥根及根茎,其所含丹酚酸B具有强烈的抗氧化和清除氧自由基的活性。Chen等[21]用HSCCC分离纯化丹参水溶性成分丹酚酸类物质,制备丹酚酸B化学对照品,其纯度为98.6%,采用的溶剂体系为正己烷-乙酸乙酯-水-甲醇(1.5:5:5:1.5),上相做固定相,下相做流动相。

1.6香豆素类

近来研究表明,香豆素类及结构相关的化合物具有抑制HIV的活性,此类化合物可能对AIDS有治疗作用。白芷为伞形科植物白芷[Angelica dahurica(Fisch.ex Hoffm.)Benth.et Hook. f.]的干燥根,Wei等[22]利用制备型HSCCC从白芷中成功分离纯化了戊烯氧呋豆素、氧化前胡内酯和异欧前胡素,纯度大于98.0%,采用的溶剂体系为正己烷-乙酸乙酯-甲醇-水(1:1:1:1和5:5:4.5:5.5,v/v)。Liu等利用制备型HSCCC,以石油醚-乙酸乙酯-甲醇-水(5:5:7:4,v/v)为溶剂体系,从紫花前胡(Radix Peucedani)中分离纯化了6个香豆素类化合物,纯度分别为88.3 %,98.0 %,94.2 %,97.1 %,97.8 %和98.4 %,若利用HSCCC再作一次分离,溶剂体系为石油醚-乙酸乙酯-甲醇-水(5:5:4:5,v/v),紫花前胡苷元(nodakenetin)的纯度可达到99.4%[23]。Liu等[24]还用HSCCC,以正丁醇-甲醇-0.5%醋酸(5:1.5:5,v/v)为溶剂体系,从Cortex fraxinus中分离纯化了4个香豆素类化合物,纯度分别为97.6%,99.5%,97.2%和98.7%。

1.7苷类

仙茅(Curculigo orchioides Gaertn.)是中医常用的补肾壮阳药物,具有许多生物活性,如抗骨质疏松、抗衰老、抗炎症反应、增强免疫力等。Peng等[25]利用制备型HSCCC从仙茅中成功分离纯化了仙茅苷和仙茅苷乙,纯度分别为96.5%和99.4%,并研究了一些参数,包括溶剂体系为乙酸乙酯-乙醇-水(5:1:5,v/v),分离温度、流动相流速和仪器的转速。

Zhou等[26]用制备型HSCCC对栀子(Gardenia jasminoides Ellis)的果实京尼平苷进行了大规模的分离纯化,一次分离粗提物1 g,溶剂体系为乙酸乙酯-正丁醇-水(2:1.5:3,v/v),得到京尼平苷的纯度大于98%。Li等[27]用HSCCC对连翘(Forsythia suspensa(Thunb.)Vahl)的果实50.0%乙醇粗提物进行了分离纯化,以正己烷-乙酸乙酯-甲醇-水(1:9:1:9,v/v)为溶剂体系,得到连翘苷的纯度大于98.6%。

1.8木脂素类

板蓝根(Radix Isatidis)为十字花科植物菘蓝(Isatis indigotica Fort.)的干燥根,有清热解毒、凉血利咽功能,有抗菌、抗病毒、抗内毒素和抗肿瘤等药理作用。Peng等[28]用制备型HSCCC从板蓝根成功地分离纯化了clemastanin B和indigoticoside A,纯度分别为94.6%和99.0%,其中溶剂体系为乙酸乙酯-正丁醇-水(2:7:9,v/v)。Peng等[29]还用制备型HSCCC,以正己烷-乙酸乙酯-甲醇-水(1:0.9:1:0.9,v/v)为溶剂体系,对经D-101大孔吸附树脂处理的北五味子[Schisandra chinensis(Turcz.)Baill.]粗提物进行了分离纯化,得到五味子素和戈米辛A,纯度均大于99.0%,用时小于3 h。Huang等[30]用HSCCC,以正己烷-甲醇-水(35:30:3,v/v)为溶剂体系,从北五味子的石油醚提取物中成功分离纯化了去氧五味子素和γ-五味子素,纯度分别为98.0%和96.0%。

1.9其他

腐败菌素为亲脂性环肽类化合物,具有多种生物活性,其杀虫活性和植物毒性广为人知,还有细胞毒性,在医学上可能有重大意义。Seger等[31]首先利用液-液提取和Sephadex LH-20浓缩得到粗提物,再利用HSCCC分离纯化得到腐败菌素A、B和E,纯度大于98.0%,总收率大于40.0%。

2结论和展望

Ito[32]为了帮助科学家们更好的应用HSCCC,总结了许多使用经验。HSCCC分离效果与仪器参数和溶剂体系的选择关系密切,其中溶剂体系的选择是至关重要的一步,占总工作量的90.0%。溶剂体系应符合以下要求:(1)样品在溶剂体系中性质稳定且溶解度足够大;(2)溶剂体系的两相有适当的体积比,以免溶剂浪费;(3)样品在溶剂体系中有合适的分配系数K(0.5≤K≤1.0);(4)溶剂体系应保证适当的固定相保留值。

HSCCC的优点有:溶剂体系的组成与配比灵活,从理论上讲可适用于任何极性范围的样品分离;仪器操作简单,对样品的预处理要求低;避免了有效成分被固相载体的不可逆性吸附,理论上样品的回收率可达100%;峰的保留相对标准偏差小于2%,重现性好;有机溶剂消耗少,无损失、无污染;分离效率高和大制备量分离等。与制备HPLC相比,HSCCC不存在色谱柱污染的问题,且进样量较大,最多可达几g,是HPLC的l04~l05倍;而与常压和低压色谱相比,HSCCC的分离能力强,有些样品经过一次分离就可以得到1个甚至多个单体,并且分离时间也较短,一般几小时就可以完成一次分离。

自HSCCC问世以来,在天然产物的提取纯化中发挥着很大的优势,应用前景十分广阔。HSCCC的任何关键性进展都有可能对天然产物的研究产生深远的影响,是值得关注的研究领域。目前HSCCC主要用于定性、分离制备,定量分析少见报道,随着研究的深入,HSCCC也会用于定量分析。例如高速逆流色谱-质谱(HSCCC-MS)联用,这将为HSCCC开拓更加广阔的应用领域。

参考文献

[1]郅文波,顾铭,宋江楠,等. 高速逆流色谱技术在生物大分子分离纯化中的应用[J]. 生物技术通讯,2005,16(1):96-99.

[2]王凤美,陈军辉,李磊,等. 高速逆流色谱法分离制备丹酚酸B[J]. 天然产物研究与开发,2006,18(1):100-104.

[3]Liu R M, Chu X, Sun A L, et al. Preparative isolation and purification of alkaloids from the Chinese medicinal herb Evodia rutaecarpa (Juss.) Benth by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1074(1-2): 139-144.

[4]蒋凯,杨春华,刘静涵,等. 黄花乌头中Hetisine型生物碱的高速逆流色谱分离与结构鉴定[J]. 药学学报,2006,41(2):128-131.

[5]Zhou X, Peng J Y, Fan G R, et al. Isolation and purification of flavonoid glycosides from Trollius ledebouri using high-speed counter-current chromatography by stepwise increasing the flow-rate of the mobile phase [J]. J Chromatogr A, 2005, 1092(1): 216-221.

[6]Du Q, Li L, Jerz G. Purification of astilbin and isoastilbin in the extract of smilax glabra rhizome by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1077(1): 98-101.

[7]Peng J Y, Yang G J, Fan G R, et al. Preparative isolation and separation of a novel and two known flavonoids from Patrinia villosa Juss by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1092(2): 235-240.

[8]Peng J Y, Fan G R, Hong Z Y, et al. Preparative separation of isovitexin and isoorientin from Patrinia villosa Juss by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1074(1-2): 111-115.

[9]Wang X, Li F W, Zhang H X, et al. Preparative isolation and purification of polymethoxylated flavones from Tangerine peel using high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1090(1-2): 188-192.

[10] Zhao M B, Ito Y, Tu P F. Isolation of a novel flavanone 6-glucoside from the flowers of Carthamus tinctorium (Honghua) by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1090(1-2): 193-196.

[11] Ma C J, Li G S, Zhang D L, et al. One step isolation and purification of liquiritigenin and isoliquiritigenin from Glycyrrhiza uralensis Risch. using high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1078(1-2): 188-192.

[12] Wang X, Cheng C G, Sun Q L, et al. Isolation and purification of four flavonoid constituents from the lowers of Paeonia suffruticosa by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1075(1-2): 127-131.

[13] Li H B, Chen F. Isolation and purification of baicalein, wogonin and oroxylin A from the medicinal plant Scutellaria baicalensis by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1074(1-2): 107-110.

[14] Wu S J, Sun A L, Liu R M. Separation and purification of baicalin and wogonoside from the Chinese medicinal plant Scutellaria baicalensis Georgi by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1066(1-2): 243-247.

[15] Liu R M, Li A F, Sun A L, et al. Preparative isolation and purification of three flavonoids from the Chinese medicinal plant Epimedium koreamum Nakai by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1064(1): 53-57.

[16] Li A F, Sun A L, Liu R M. Preparative isolation and purification of costunolide and dehydrocostuslactone from Aucklandia lappa Decne by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1076(1-2): 193-197.

[17] Ma Y M, Aisha H A, Liao L X, et al. Preparative isolation and purification of rupestonic acid from the Chinese medicinal plant Artemisia rupestris L. by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1076(1-2): 198-201.

[18] Yan J Z,Chen G,Tong S Q,et al. Preparative isolation and purification of germacrone and curdione from the essential oil of the rhizomes of Curcuma wenyujin by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1070(1-2): 207-210.

[19] Lu H T, Jiang Y, Chen F. Preparative high-speed counter-current chromatography for purification of shikonin from the Chinese medicinal plant Lithospermum erythrorhizon [J]. J Chromatogr A, 2004, 1023(1): 159-163.

[20] Yao S H, Li Y, Kong L Y. Preparative isolation and purification of chemical constituents from the root of Polygonum multiflorum by high-speed counter-current chromatography [J]. J Chromatogr A, 2006, 1115(1-2): 64-71.

[21] Chen J H, Wang F M, Frank Sen-Chun Lee, et al. Separation and identification of water-soluble salvianolic acids from Salvia miltiorrhiza Bunge by high-speed counter-current chromatography and ESI-MS analysis [J]. Talanta, 2006, 69(1): 172-179.

[22] Wei Y, Ito Y. Preparative isolation of imperatorin, oxypeucedanin and isoimperatorin from traditional Chinese herb“bai zhi”Angelica dahurica (Fisch. ex Hoffm) Benth. et Hook using multidimensional high-speed counter-current chromatography [J]. J Chromatogr A, 2006, 1115(1-2): 112-117.

[23] Liu R M, Sun Q H, Shi Y R, et al. Isolation and purification of coumarin compounds from the root of Peucedanum decursivum (Miq.) Maxim by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1076(1-2): 127-132.

[24] Liu R M, Sun Q H, Su A L, et al. Isolation and purification of coumarin compounds from Cortex fraxinus by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1072(2): 195-199.

[25] Peng J Y, Jiang Y Y, Fan G R, et al. Optimization suitable conditions for preparative isolation and separation of curculigoside and curculigoside B from Curculigo orchioides by high-speed counter-current chromatography [J]. Sep Purif Technol, 2006, 52(1): 22-28.

[26] Zhou T T, Fan G R, Hong Z Y, et al. Large-scale isolation and purification of geniposide from the fruit of Gardenia jasminoides Ellis by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1100(1): 76-80.

[27] Li H B, Chen F. Preparative isolation and purification of phillyrin from the medicinal plant Forsythia suspensa by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1083(1-2): 102-105.

[28] Peng J Y, Fan G R, Wu Y T. Isolation and purification of clemastanin B and indigoticoside A from Radix Isatidis by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1091(1-2): 89-93.

[29] Peng J Y, Fan G R, Qu L P, et al. Application of preparative high-speed counter-current chromatography for isolation and separation of schizandrin and gomisin A from Schisandra chinensis [J]. J Chromatogr A, 2005, 1082(2): 203-207.

[30]Huang T H, Shen P N, Shen Y J. Preparative separation and purification of deoxyschisandrin and ?schisandrin from Schisandra chinensis (Turcz.) Baill by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1066(1-2): 239-242.

[31] Seger C, Eberhart K, Sturm S, et al. Apolar chromatography on Sephadex LH-20 combined with high-speed counter-current chromatography: High yield strategy for structurally closely related analytes-Destruxin derivatives from Metarhizium anisopliae as a case study [J]. J Chromatogr A, 2006, 1117(1): 67-73.

[32] Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1065(2): 145-168.

注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。”