开篇:润墨网以专业的文秘视角,为您筛选了一篇基于颗粒流方法的节理岩体力学参数量化范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘 要:节理岩体的力学参数是与岩体相关的地下工程设计的主要依据。区别于实验室完整岩块,现场原岩中结构面的存在显著弱化了岩体的强度,为地下工程设计带来了一定的不确定性。为解决此问题,本论文拟采用基于颗粒流的数值模拟方法,为节理岩体的力学参数量化提供一种新思路。
1 概述
颗粒流是近年来兴起的主要应用于硬岩的数值模拟新方法。区别于现有的连续性数值模型,颗粒流以不可破坏圆形颗粒作为基本单元,通过颗粒之间的粘结来显式模拟完整岩块的脆性破坏。当颗粒之间的拉应力超过颗粒粘结的拉强度时,裂纹被标记为拉破坏,反之当颗粒之间的剪应力超过粘结的剪强度时,裂纹被标记为剪破坏。通过这种简单的接触关系,颗粒流方法可以精确再现岩块在压缩或者拉伸状态下的裂纹扩展模式。颗粒流方法通过颗粒之间的微观接触来控制模型的宏观破坏模式,模型的宏观力学参数是通过不断校对这些微观接触参数来实现的。
2 颗粒流模型
本论文采用的实验室完整岩块的力学参数来源于灰岩,包括峰值强度:122MPa,弹性模量:80.0GPa,泊松比:0.25。图1显示了不包含任何节理的颗粒流模型,用于初始的颗粒接触微观参数校对,其中三个测量圆用于监测模型在单轴压缩过程中的应力应变变化。然后建立三个包含结构面的节理岩体颗粒流模型;每个模型包含三组节理,其中主节理组1的倾向为0度,主节理组2的倾向为90度,两组主节理的产状设置为相同;次节理组3设置为与两组主节理同时垂直。为了描述方便,本论文以主节理的倾角作为标识:R-30、R-60、R-90分别表示模型中主节理的倾角为30、60、90度。各组节理的平均直径均设置为0.5m。
3 模型解译
本论文主要考虑节理岩体在单轴压缩状态下的力学参数,包括岩体的峰值单轴抗压强度和弹性模量。由于工程岩体的尺寸在大多数情况下不适合现场原位试验,目前这两个力学参数主要通过经验或者半经验方法估算,这样不可避免地会产生适应性不足的问题。本论文介绍的颗粒流方法从数值模型的角度提供了一种新思路。通过一系列针对图1中完整岩块模型的单轴压缩试验,最终校对的颗粒流模型微观参数如表1所示。完整岩块在单轴压缩过程中的应力应变曲线如图2所示,从中可以确认基于表1的微观参数所得结果符合第2节列出的灰岩力学参数。表1同时提供了结构面的力学参数。
图2 完整岩块单轴压缩应力应变曲线
图3显示了节理岩体数值模型的单轴压缩应力应变曲线,这些节理岩体的峰值强度和弹性模量也标注于该图中。数值模拟的结果显示节理岩体的峰值强度明显受到结构面产状的控制。岩体强度随主节理的倾角变化显示出典型的U型特点,即当节理倾角从15度增加到45度时,岩体强度从47.1MPa减小到24.5MPa,然后逐渐增大到52.0MPa(主节理倾角90度)。强度的U型变化可以从节理岩体的破坏模式来分析(完整岩块控制和结构面控制)。根据简单力学分析,当结构面的摩擦系数大于结构面的倾角时,沿结构面的完整岩块剪切破坏会被阻止。这种条件下节理岩体的破坏主要由节理间的完整岩块控制,考虑到岩块的强度远大于结构面的剪切强度,当节理岩体的破坏是结构面控制时,岩体峰值强度会偏小。
节理岩体的弹性模量呈现出与峰值强度类似的U型变化特征(图3)。当主节理倾角从15度增加到90度时,弹性模量首先从42.2GPa减小到29.9GPa和30.2GPa,然后增加到40.7GPa和52.5GPa。类似的,由于结构面的刚度小于完整岩块的刚度,当岩体的破坏是结构面控制型时,节理岩体的弹性模量偏小,反之,节理岩体的模量偏大。
4 结论
本论文展示了应用颗粒流量化节理岩体的力学参数的新型数值模拟方法。通过作用于完整岩块模型的单轴压缩试验,本论文首先校对了颗粒之间的微观参数,然后通过一系列不同结构面分布的节理岩体模型,本论文确认节理岩体的峰值单轴抗压强度呈现出典型的U型变化,即当岩体所含节理有利于岩块的剪切滑移时,节理岩体的强度显著减小;而当节理不利于岩块的剪切错动时,节理岩体的强度更多地受到岩体中完整岩块控制,强度显著上升。节理岩体的弹性模量呈现出与强度相同的变化规律。本论文为量化节理岩体的力学参数提供了额外的途径,论文结论可以作为地下岩体工程设计的参考。
参考文献:
[1]Potyondy,DO;Cundall,PA;2004.A bonded-particle model for rock. International Journal of Rock Mechanics & Mining Sciences,41,1329-1364.
[2]Mas Ivars,D;Pierce,M;Darcel,C etal.2011.The synthetic rock mass approach for jointed rock mass modeling. International Journal of Rock Mechanics & Mining Sciences,48,219-244.