首页 > 范文大全 > 正文

浅埋法穿越桥梁风险

开篇:润墨网以专业的文秘视角,为您筛选了一篇浅埋法穿越桥梁风险范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

城市隧道工程所处市区建筑密度大、人口密集、交通拥挤,施工场地狭小、条件较差,施工风险大,一旦出现事故就会造成巨大的经济损失和严重的社会影响,这无疑为隧道施工安全风险控制提出了更高要求.城市隧道穿越既有桥梁是一个复杂的风险性系统工程,由于隧道施工造成地层过大变形,会导致既有桥梁发生倾斜、断裂、错位,甚至出现坍塌等事故.因此,建立一套完善的城市隧道穿越既有桥梁安全风险管理体系是非常必要的.国外发达国家对风险控制的研究较早,逐步形成了较完善的风险管理体系[1-4].目前,国内城市地下工程正处于建设高潮,对安全风险管理体系的研究和实践取得了多项积极的成果.北京已建立和实施了北京地铁建设工程环境安全风险技术管理体系,编制完成了《北京地铁工程监控量测技术规程》和《北京地铁工程监控量测设计指南》;张顶立教授创造性地提出了地下工程风险管理的模式,在北京地铁5号线、4号线和10号线的环境安全风险中应用并取得了较为理想的效果;陈志良[5]重点论述了立交桥群桩与地铁同期施工扰动下,地铁施工采用超前密排小管棚注浆预支护等施工技术.然而,对于专门用于城市隧道穿越既有桥梁工程施工风险控制的研究仍缺乏针对性和可靠性的指导方案和体系.为此,本文作者对这一系列问题进行深入探讨和研究,建立城市隧道穿越既有桥梁工程施工的风险控制体系,并将其应用于工程实际.

1风险控制体系的建立根据风险控制的基本原则及风险发生本质[6],本文作者将风险控制体系分为风险识别、风险评价、风险应对及风险监控4个阶段,其核心在于研究工程风险发生的规律及风险控制技术.通过控制体系的实施,选择最有效的施工关键技术,主动、有目的地处理风险,从而以最合理的方式达到最终的控制目的.浅埋暗挖法穿越既有桥梁施工风险控制方案,如图1所示.

1•1风险识别风险识别是风险控制的基础,只有准确识别出工程的风险诱因,才能为后期的风险控制提供可靠的处置对象.因此在地铁邻近既有桥梁施工前首先应对工程自身及周边环境进行资料收集,在此基础上分析判断出风险的来源.以既有桥梁结构为关注重点,通过对地层状况、施工工法、支护及辅助工法等的分析,可以得到既有桥梁可能会出现的风险,如图2所示.图2隧道施工过程中既有桥梁可能出现的风险Fig.2Potentialriskofexistingbridgeintunnelconstruction

1•2风险评估为制定合理的地铁施工时邻近既有桥梁的控制标准,并提出有效的加固预案,在隧道施工前应根据桩基承载力、既有结构现状和既有结构的重要程度对既有桥梁的影响,将穿越工程中既有桥梁桩基的风险划分为A~D,4个等级,见图3.

1•3风险应对1)主动防护技术.对于具体的浅埋暗挖隧道穿越既有桥梁工程,通常可采用不同的施工方案完成.事实上不同施工方案各有利弊,从保护既有桥梁的安全要求出发,以减小施工对既有桥梁的影响为主要控制目标,可对施工方法进行优化分析,对每个施工步序,根据已产生的内力和变形及控制要求,适当地采用施工主动防护,控制既有桥梁的变形.主动防护方法的选择应同时考虑技术难度和经济环境效益状况,在满足要求的情况下,尽可能实现施工对既有桥梁造成的附加影响最小,以保证最佳的安全状态.同时还应考虑到辅助施工措施的应用情况,通过附加影响预测值与既有桥梁控制标准的对比,寻求最为合理的技术方案和措施.当附加影响能够满足控制要求时,应适当考虑辅助措施的技术难度和经济代价;反之,则应同时考虑既有结构加固和辅助施工措施的加强.2)施工过程控制.过程控制流程见图4.图4中S为每个步序的沉降值、P为与S相对应的控制标准值,i为施工步数,n为总的施工步数.每个施工过程均是由各施工步序组合而成,而施工过程中各环节既有独立性,又有关联性.施工过程控制分为3部分:①根据过程控制原理[7-10],通过预测施工过程,优化施工方案,将环境控制目标合理分配至各个施工阶段;②当采用常规方法不能满足控制标准要求时,需要采用辅助工法进行控制.常见的辅助工法有:超前注浆、施做隔离桩、既有结构抬升等;③按照阶段性控制目标,对每个施工步序进行阶段性环境风险控制.最终实现环境风险控制目标.

2工程实例分析

2•1工程概况北京地铁6号线一期工程新建花园桥站,主于西三环花园桥主跨下方,沿玲珑路和车公庄西路方向跨路口东西向设置.花园桥(图5)西侧为玲珑路,东侧为车公庄西路,为地面道路,南北向为高架的三环主路.车站主体与道路关系如图6所示.根据场地条件及工期安排,车站穿越既有桥梁段采用PBA(洞桩法)法施工,暗挖段结构剖面图如图7所示.

2•2风险识别

2•2•1桥梁现状调查穿越施工前,对桥梁现状进行了工前检测评估,检测结果如下•1)上部结构.轴⑥~轴⑨梁体混凝土表面无破损、无露筋,梁外表面未见裂缝.2)下部结构.桥梁墩柱混凝土表面无破损、无露筋,墩柱外表面未见裂缝;桥梁墩柱上部盖梁有水迹,且水迹位置在预留洞口处.3)支座.支座表面无破损、无开裂,支座外观未见脱空,个别支座固定螺栓松动.4)安全等级评定.依据《城市桥梁养护技术规范》(CJJ99-2003),该桥桩安全状态评定等级为B级,属于良好状态,应进行日常保养和小修.5)检测结论.检测结果表明花园桥在隧道下穿施工前整体情况基本完好,除局部表面缺陷外,总体完好,目前结构处于安全使用状态.

2•2.2空间位置关系暗挖隧道与既有桥桩空间位置关系不同,桩基受到相应的施工影响程度也不同.对隧道与桩基空间位置关系分区进行研究,得到桩基影响分区图,如图8所示.其中D为隧道洞径.根据暗挖隧道与花园桥空间位置关系,穿越区轴⑦、轴⑧上各桩基(见图7)的影响区间划分为:1号桩基,位于Ⅰ级影响区;2号桩基,位于Ⅱ级影响区,偏于Ⅰ级影响区;3号桩基,位于Ⅲ级影响区,偏于Ⅳ级影响区;4号桩基,位于Ⅳ级影响区.可看出1号及2号桩基风险很大,但由于3号、4号桩基受影响较小,使轴⑦、轴⑧出现较大不均匀差异沉降的风险大大增加.

2•3风险评估

2•3•1风险等级划分为制定合理的地铁施工时邻近既有桥梁的控制标准,并提出有效的加固预案,在隧道施工前应根据桩基承载力影响等级、既有结构现状、既有结构的重要程度对既有桥梁的影响进行风险等级的划分,将穿越工程中既有桥梁桩基的风险等级划分为A、B、C、D,4个等级,各桥桩风险等级如表1所示.

2•3•2控制标准的制定依据既有桥梁检测结论,桥梁安全评估方提出桥梁允许的变形值为:①承台竖向不均匀沉降控制值<5mm;②纵桥向基础平移(含倾斜)≤4mm;③横桥向基础平移(含倾斜)≤4mm.

2•险应对为了分析设计施工方案是否满足桥梁变形的控制标准,以便对其进行必要的优化调整,采用FLAC3D对施工过程进行三维模拟,分析PBA施工下地表及桩基位移的变化.计算模型如图9所示,计算结果见图及表从图10及表2可以看出:①车站中线上方地表沉降稳定在40mm•②由于桩基的存在,地层变形在桩基处受到阻碍,造成了地表沉降出现突变,桩基后方土体沉降较小•③桩基最大沉降达到13•8mm,超过了控制值,需要采取辅助措施减小车站施工对既有桩基的影响.根据以上模拟分析可知,如不采取辅助措施施工,将无法满足桩基安全控制标准.考虑现场条件,采取隔离法对既有桥梁实施主动防护.隔离法主动防护施工措施包括:地面深孔注浆;取消桥桩段前后5m范围内的6号导洞,围护桩兼做隔离桩,配筋加强且直接嵌入卵石层;近1号桥桩侧上导洞中部增设临时仰拱.对隔离法主动防护施工过程进行数值模拟分析,数值模拟模型见图11,地表沉降槽如图12所示,各施工步序下桩基沉降值见表3.由图12和表3可以看出:1)地表沉降值最大为25mm,由于地层注浆加固及隔离桩的存在,当1、3导洞开挖后,右侧地表沉降基本没有变化,左侧地表变形大于右侧地表变形,桩基后方土体沉降较小.2)通过桩周地层加固及隔离桩施作,既有桥桩沉降控制效果明显,最终沉降值为3•5mm,符合既有桥梁安全控制要求,可采取隔离法防护措施进行实际施工.3)根据过程控制原理,对各施工步序控制值进行分配,各施工步序累积沉降值如表3所示.

2•5现场实测结果分析2011年2月,各导洞穿越桥梁基本上完成,此时,各项监测数据均处于正常状态,无明显异常,其中墩柱沉降累计最大值为-1•06mm,墩柱水平位移累计最大值为0•60mm,墩柱倾斜累计最大值为0•37‰,墩柱应变累计最大值为-62•0με.由实测结果可以看出,施工风险得到控制,保证了工程的安全和顺利进行.各测点布置见图13,各项变化历时曲线如图14~图17所示,其中CJ代表沉降、SP代表水平位移、QX代表倾斜、YL代表应力.

3小结

1)风险控制是保证施工安全的有效手段,综合考虑既有桥梁的现状调查、风险等级划分、控制指标及控制标准的确定、施工工法优化、施工中监控量测、过程恢复及工后评估等方面,建立了系统的隧道穿越邻近既有桥梁施工风险控制体系:风险识别、风险评估、风险应对及风险监控.2)将浅埋暗挖法穿越既有桥梁安全风险控制体系运用到了北京地铁六号线花园桥站穿越既有花园桥工程中.工前对穿越工程进行了风险识别、风险等级划分根据风险等级采用数值模拟的方式进行了相应的工法优化,确定了施工方案及各主要施工阶段桥梁变形控制值.为了使既有桥梁能够满足变形控制的需要,采取了注浆加固、打设隔离桩两种主动防护措施,对桥梁变形进行全过程控制.监测结果表明地铁车站成功穿越既有花园桥,证明浅埋暗挖法穿越既有桥梁安全风险控制体系是可行、有效的.