首页 > 范文大全 > 正文

基于交叉评价DEA模型的中国省域低碳经济效率研究

开篇:润墨网以专业的文秘视角,为您筛选了一篇基于交叉评价DEA模型的中国省域低碳经济效率研究范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:采用交叉评价机制DEA模型,对2012年中国省域低碳经济效率进行了测算与评价。研究结果显示:中国区域低碳经济效率基本上呈现东部>中部>西部的梯度分布,且省际分化明显。广东、福建、上海、浙江、江苏、湖北、海南等7个地区低碳经济发展水平较好。河南、四川、重庆、贵州、甘肃、河北、山西等7省,这些地区低碳经济效率最低。通过分析各个省市效率低下的原因,考虑不同地区资源禀赋、经济发展现状和产业结构布局,进而制定具有针对性的碳减排战略。发展低碳能源、低碳产业、低碳消费和加大低碳技术研发投入,对提高我国低碳经济的发展具有重要的意义。

关键词:低碳经济效率;碳排放;DEA模型

中图分类号:F124.3;F224

文献标识码:ADOI:10.3963/j.issn.16716477.2016.05.0022

在中国经济快速发展的同时,伴随着资源的高投入、环境的高污染,以及低效率和碳排放剧增,即资源、环境的刚性约束与高能耗、高污染、低产出的传统经济发展模式之间的矛盾日益突出。作为温室气体最重要的组成部分,如何控制二氧化碳排放,实现社会经济可持续发展,成为全球关注的焦点。从碳排放强度看,我国的碳排放强度不但高于发达国家,也高于部分发展中国家。例如,2010年我国每万美元GDP二氧化碳排放量是13.8吨,是美国的3.8倍,日本的6.9倍, 欧盟的 6.3倍,巴西的7倍,印度的1.6倍①。

“十三五”纲要已明确提出,把大幅度降低能源消耗强度和二氧化碳排放强度作为约束性指标,有效控制温室气体排放。因此,在研究经济效率的同时,把二氧化碳排放量纳入经济发展评价指标,利用经济模型对我国省域低碳经济发展进行评价,对于推进低碳发展、提高低碳经济发展效率具有重要的指导意义。

一、国内外关于低碳经济的研究

(一)国外学者关于低碳经济的相关研究

2003年,英国首次在政府文件中提出“低碳经济”的概念,认为低碳经济是通过低碳消耗和低污染以获得高产出,通过应用先进的技术来推动经济的发展。J. A. Duro 和 E. Padilla利用 theil 指数分解法,证实影响碳排放差异的主要因素是人均收入[1]。Kei Gomi,Koji Shimada等对建立区域低碳社会进行了研究,认为区域发展应该建立二氧化碳减排目标,制定二氧化碳排放的长期计划,通过温和的经济增长来实现目标和计划[2]。M. David等分析了不同国家及部门温室气体减排目标实现的可能性,并给出相应政策建议[3]。Toshihiko Nakata,Mikhail Rodionov等认为全球应通过构建一个新的能源系统向低碳社会转型,常规的能源系统侧重于世界能源供给与需求网络,新的能源系统应该是立足于减少全球碳排放,更改能源结构,提高能源效率的创新系统[4]。Fankhauser S借鉴英国的经验,为碳减排的政策制定者提供了实际可行的建议。他认为,给碳定价是至关重要的,但低碳还必须解决更广泛的市场、投资的政策和行为失败问题,这反过来提高政策的复杂性和协调的问题。碳转型主要是革命的生产,而不是消费。供应方面的创新和需求需要调整生活方式和行为,但前者占主导地位[5]。Xue J, Watanabe S.通过分析日本的碳排放现状,对日本政府对气候管理和能源管理的研究,结果发现,日本广泛开展能源外交、建设能源储备、大力发展新能源以保障能源供给,推动了日本传统社会向“新型低碳社会”的转变。日本的气候政策和能源政策对于发展我国的低碳经济具有十分重要的借鉴意义[6]。国外学者的研究主要针对碳排放和能源政策的研究,对于我国相关政策的制定具有一定的指导意义。

(二)中国学者关于低碳经济方面的研究

1.对低碳经济效率评价的相关研究。陈诗一基于SBM-DDF-AAM低碳经济分析理论机制,构建了低碳转型进程的动态评估指数,并对改革以来中国各省级地区的低碳经济转型进程进行评估和预测[7]。朱承亮在考虑非期望产出SO2和COD的基础上,基于产出角度的SBM-Undesirable模型,从效率视角对节能减排约束下中国绿色经济绩效进行了研究,发现:考察期内效率较低的省份全部为西部省份,但效率较高的省份未必全部为东部省份,个别西部省份在一些年份均处于生产前沿;中国经济增长效率区域差异明显;优化产业结构、提高能源效率、增强环境治理强度及能力对经济增长效率具有显著促进作用[8]。刘瑞翔利用了生产率指数构建与分解方法,发现能源消耗和污染排放是中国环境无效率的主要来源[9]。周莹在“压力-状态-响应”框架下构建了省域低碳经济运行状况综合评价指标体系[10]。相关学者对省域低碳经济效率的相关研究,主要是通过构建低碳经济发展的指标体系,分析各省低碳发展的差异,进而对各地区低碳经济发展水平进行评价。

2.对低碳经济影响因素的相关研究。林伯强得出对我国碳排放影响较为显著的因素包括经济增长、收入增加和能源强度[11]。涂正革发现:经济规模每增长1个百分点,碳排放量平均增加15百万吨(MT);不同行业间经济增长的边际碳排放量差异很大,推动产业结构调整、能源结构优化,促进节能技术与工艺创新、走新型工业化道路,是实现中国低碳发展的必经之路[12]。李涛运用面板数据模型回归,考察了影响我国低碳经济发展的相关因素,认为产业结构对改善碳排放效率最有成效。史亚东利用超效率DEA模型,测算了我国主要能耗行业在碳减排约束下的能源利用效率,发现碳减排约束对能源利用效率有显著的影响[1314]。贾登勋利用Tobit模型研究了低碳经济发展效率的区域差异及影响因素,结果显示,产业结构、经济发展水平、能源消费结构和能源消耗强度与低碳经济发展水平负相关[15]。

中国学者主要利用投入产出模型回归等方法来研究我国的碳排放和低碳经济发展,主要采用数据包络分析等方法,研究影响碳排放的相关因素,进而探索改善碳减排的措施,提出相应的政策建议。

4.低碳经济效率极低(有效值低于0.45)地区有:河南、四川、重庆、贵州、甘肃、河北、山西等7省,说明这些地区转变经济发展方式的形势迫切。例如山西省,GDP为12 113亿元,CO2排放量为10 396万吨,资本存量为11 511亿元,劳动力人口为1 790万人,能源消耗为19 336万吨。山西省是明显的高排放、高能耗省份,产出并没有高出平均水平,低碳经济效率极低。甘肃省,GDP为5 650亿元,CO2排放量为4 048万吨,资本存量为6 155亿元,劳动力人口为1 492万人,能源消耗为7 007万吨。甘肃省各项指标都很低,但其低产出是低碳效率极低的最主要原因。

四、研究结论及政策建议

(一)研究结论

本文通过采用基于交叉评价dea方法,测度和评价了2012年中国30个省份的低碳经济效率,避免了传统DEA模型中权重依赖性的缺陷。

研究表明,2012年中国区域低碳经济效率基本上呈现东部>中部>西部的梯度分布,且省际差异明显。从区域层面上看,低碳经济效率东部为0.68,中部为0.58,西部为0.48,同时,从省际层面上,各省低碳经济效率差异较大。广东、福建、上海、浙江、江苏、湖北、海南等7个地区低碳经济发展水平较好。河南、四川、重庆、贵州、甘肃、河北、山西等7省,这些地区低碳经济效率最低。在资源与环境的约束下,能源消耗和碳排放是低碳经济效率低下的主要来源。在明确了省际低碳经济效率差异的基础上,可以通过分析每个省市效率低下的原因,考虑不同地区资源禀赋、经济发展现状和产业结构布局,进而制定具有针对性的碳减排战略,有的放矢。例如,山西省是我国主要煤炭产区,属于传统能源大省,煤炭开采与加工对地区碳排放影响较为显著。山西高能耗行业所占比重达到53%,因此其低碳化进程中,应加大煤炭开发使用领域的技术投资,强化高能耗行业研发管理力度。

(二)提高低碳经济发展效率的手段

1.发展低碳能源,优化能源消费结构。在低碳经济背景下,中国应以节能减排为重点,加快工业内部结构调整,扩大清洁能源的利用,优化能源消费结构,以提高能源效率。以“高能耗、高产出”的辽宁省为例,应当在产出不减少的情况下提高能源利用效率,同时控制二氧化碳的排放。

2.发展低碳产业,推进产业结构转型升级。推进产业结构转型升级,严格限制“高能耗、低产出”产业的发展。从源头减少碳排放,比如优化产业结构,加快产业升级,减少能耗,降低二氧化碳的排放水平。以山西省为例,面对其高排放、高能耗的发展特征,产业转型升级是当务之急。

3.提倡低碳消费与环境保护。发展低碳经济与低碳消费直接关联。要求在大幅度提高经济指标的同时,加强生态环境建设和保护,只有通过节能减排、要素重置推动全要素生产率持续改善才是低碳转型和经济持续发展的必由之路。

4.鼓励自主研发,加大技术投入强度,完善碳权交易平台和碳基金运营模式。完善碳交易平台,将碳排放纳入效率评价体系,激发企业减排的积极性。政府为低碳技术的研发提供资金拨款,同时鼓励民间投资,为低碳经济的发展提供更多政策与资金支持。

注释:

①此处二氧化碳排放强度中二氧化碳数据来源于美国橡树岭国家实验室二氧化碳信息分析中心(CDIAC)。

[参考文献]

[1]Duro Juan Antonio, Padilla Emilio . International inequalities in per capita CO2 emissions : A decomposition methodology by kaya factors[J] . Energy Economics , 2006,28(2):170187.

[2]Kei Gomi, Koji Shimada, Yuzuru Matsuoka, et al. Scenario Study for a Regional Low carbon Society[J]. Sustainability Science . 2007(2):121131.

[3]David M, Christopher Y. Achieving deep reductions in US transport greenhouse gas emissions: Scenario analysis and policy implications[J]. Energy Policy , 2009,37(12):550559.

[4]Nakata T, Rodionov M, Silva D, et al. Shift to a low carbon society through energy systems design[J]. Science China Technological Sciences, 2010,53(1):134143.

[5]Fankhauser S. A practitioner’s guide to a lowcarbon economy: lessons from the UK[J]. Climate Policy, 2013,13(3):345362.

[6]Xue J, Watanabe S. Low Carbon Economy in Japan[J],Handbook of clean energy systems,2015(6):37193753.

[7]陈诗一.中国各地区低碳经济转型进程评估[J].经济研究,2012(8):3244.

[8]朱承亮,岳宏志,安立仁.节能减排约束下中国绿色经济绩效研究[J].经济科学,2012(5):3344.

[9]刘瑞翔,安同良.资源环境约束下中国经济增长绩效变化趋势与因素分析:基于一种新型生产率指数构建与分解方法的研究[J].经济研究,2012(11):3447.