开篇:润墨网以专业的文秘视角,为您筛选了一篇理清数列函数关系 巧探数列最值解法范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘要:从近几年新课标高考来看,数列的考查越来越趋向于简单化,数列求最值,却成了高考命题的热点,也成了联系数列与函数单调性、导数应用、不等式求解等知识交汇题型的纽带.均值定理法、函数性质法、导数法等都巧妙地把数列求最值转化成了函数最值问题.
关键词:数列;数列最值;函数性质关系;导数求最值;均值定理求最值;巧妙转化
中图分类号:G633.6 文献标志码:A?摇 文章编号:1674-9324(2014)07-0245-02
数列在高中数学中可以说是“叱咤风云”,具有深刻的内涵与丰富的外延,在应用中显示出独特的魅力和势不可挡的渗透力.从近几年新课标高考来看,数列的考查逐渐趋向于简单化,但是数列求最值,却成了高考命题的热点,也成了联系数列与函数单调性、导数应用、不等式求解等知识交汇题型的纽带.本文主要谈谈数列求最值的几个常规解法,供读者参考.
一、均值定理求数列中项的最值
例1 (2013届闵行区二模)公差为d,各项均为正整数的等差数列{an}中,若a1=1,an=73,则n+d的最小值等于(?摇?摇).
解:Q a1=1,an=73,d=■,d+n=■+n=■+(n-1)+1,n=9时,n+d取最小值18.
点评:利用式子特征构造均值定理应用环境,适用于所求式子为齐次分式,或分子分母一、二次能分离的,可以构造均值定理的数列求最值问题.
【变式1】设a1,a2,…,a2007均为正实数,且■+■+…+■=■,则a1a2…a2007的最小值是(?摇?摇) .
解:设xi=■,则ai=2・■,且■xi=1,所以a1a2…a2007 =22007・■・(x2+x3+…+x2007)・(x1+x3+…+x2007)…(x1+x2+…+x2006)≥22007・■・2006・■・2006・■…2006・■22007・20062007=40122007
二、函数性质法求解数列最值
例2 (2013江苏理14题)在正项等比数列{an}中,a5=■,a6+a7=3,则满足a1+a2+L+an>a1a2Lan的最大正整数n的值为 .
解:a5=■,a6+a7=3,a5q+a5q2=3,q2+q-6=0,Qq>0, q=2,an=2n-6,Qa1+a2+a3+…+an>a1a2a3…an,2n-5-2-5>
2■,2n-5-2■>2-5>0,n-5>■, ■
解法二:设等比数列{an}的公比q,则q>0,根据题意得a5=a1q4=■a5+a7=a1q4(q+q2)=3,化简得q2+q-6=0,解得q=2或q=-3(舍),a1=2-5,又QSn=■=2-5(2n-1-1)a1・a2・…・an=a1n・q1+2+3+…+n-1=(2-5)n2■,又Qa1+a2+…+an>a1・a2・…・an,所以2n-1-1>2■,将n=1,2,3,…带入验证发现n≥13时上述不等式成立.故n取最大整数12.
点评:数列是特殊的函数,若其通项或前n项和有明确的函数解析式时,一般考虑用函数的单调性质求取最值,但要注意自变量n的取值范围.一般情况下用作差或作商来证明单调性求解,有时也用导数来证明.本题易忽视公比的取值范围而致错,对指数幂的运算性质不熟也会导致错误.
【变式2】已知数列{an}满足an=■-■,数列{an}的最大项为 .
解:(作商法求单调性)an=■,■=■n∈N*,■+■a3>L>an>an+1>L数列{an}有最大项,最大项为第一项a1=■-1.
三、导数法在数列求最值当中的应用
例3 [2013新课标Ⅱ卷(理)]等差数列{an}的前n项和为 Sn,已知S10=0,S15=25,则nSn的最小值为 .
解:由已知得:Sn=■n(n-10),设f(n)=nSn=■(n3-10n2)f '(n)=n(n-■),靠近极小值点n=■的整数为6和7,代入f(n)计算得n=7时f(n)最小,最小值为49.
点评:导数法求数列最值,一般用于所求解析式是高次,或作商和作差不好判断单调性的题型,是利用函数性质求数列最值的一种特况,作为研究数列和函数的桥梁,使问题解决便捷.
【变式3】 (2013年浙江省高中数学竞赛试题解答)数列{■},n=1,2,L,则数列中最大项的值为( ?摇).
解:f(x)=x■=e■?圯f'(x)=■(1-lnx)?圯x=e为极大值点,即数列最大项■.
四、数列特性法求解最值
例4?摇(2011北约13校自主选拔)在等差数列{an}中,a3=-13,a7=3,数列{an}的前n项和为Sn,求数列{Sn}的最小项,并指出其值为何.
解:因为a3=-13,a7=3,所以d=4,所以an=4n-25,
法一:由an=4n-25≤0an+1=4(n+1)-25>0得■
法二:由Sn=■=2n2-23n=2n-■■-■,所以当n=6, (Sn)min=S6=-66.
点评:等差数列求解最值问题,一般利用等差数列的特性、单调性或其前n项和的二次函数性质求解最方便.
总之,数列最值问题求法多种多样,运用技巧灵活,知识综合性强,它成为数列与函数单调性、导数应用、不等式求解等知识交汇题型的纽带.均值定理法、函数性质法、导数法等都巧妙地把数列求最值转化成了函数最值问题,并且数列本身性质也为求取最值开辟了巧妙的思路.