首页 > 范文大全 > 正文

钢筋混凝土构件裂缝宽度研究综述

开篇:润墨网以专业的文秘视角,为您筛选了一篇钢筋混凝土构件裂缝宽度研究综述范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:本文在通读国内外文献的基础上,回顾了国内外学者关于钢筋混凝土梁在短期荷载作用下裂缝问题的研究,以及长期荷载作用下裂缝问题的研究,以方便后来学者发现新问题,研究新方向。

关键词:裂缝宽度、预应力混凝土、短期荷载、长期荷载

一、 前言

钢筋混凝土是一种混合的非均质材料,混凝土抗拉强度较低,延性较差,钢筋混凝土受拉构件和受弯构件在不大的拉应力作用下便会产生裂缝,过宽的裂缝不仅影响结构美观,而且严重影响结构耐久性和安全性。鉴于国内外近几十年的不断研究,钢筋混凝土构件裂缝问题已经取得了丰硕的研究成果,但由于裂缝开展机理的复杂性以及混凝土开裂影响因素的多样性,使得现有裂缝宽度计算方法并未能得到统一的看法,因此,有必要更加全面,更加准确的研究钢筋混凝土的裂缝问题。

二、国外关于短期荷载作用下裂缝宽度的研究进展

早在20世纪30年代,国外学者便进行了大量的研究工作,广泛研究裂缝的产生机理、影响裂缝宽度的因素,并提出了多种计算理论及计算方法。其中最为广泛应用的有四种:粘结滑移理论、无滑移理论、粘结―无滑移综合理论、基于试验的数理统计方法。

1936年,R.Saligar[ ]首次提出了粘结滑移理论,又称为经典理论。粘结滑移理论假设构件开裂后钢筋表面处的裂缝宽度等于构件表面的裂缝宽度,即裂缝宽度等于裂缝间距范围内钢筋和混凝土的变形差。根据这种理论,影响裂缝开展的主要因素是钢筋所受应力以及钢筋直径与配筋率的比值。该理论被欧洲混凝土委员会-国际预应力协会模式规范CEB-FIP(Mode Code 1990)采纳。

粘结滑移理论认为钢筋附近和构件表面的裂缝宽度相等,但这一结论与很多实验结果明显不符,因此很多学者对粘结滑移理论提出了质疑,便构成了无滑移理论的基础。1966年,Base建立了无滑移理论,他假定在钢筋混凝土构件允许的裂缝宽度范围内,钢筋与混凝土之间没有相对滑移,即裂缝宽度在钢筋表面处为零,构件表面的裂缝宽度随该点至钢筋的距离(或保护层厚度)成正比增大。该理论被英国BS8100规范采纳。

尽管粘结滑移理论和无粘结滑移理论对裂缝宽度计算都做出了巨大贡献,且一定程度上揭示了裂缝发展机理,但二者所考虑的裂缝开展的主要影响因素不同,都不能准确反映裂缝机理的全部本质。于是1966年,Ferry-Borges根据150个拉杆试验数据提出了粘结-无滑移综合理论,并首次提出基于这种综合考虑的裂缝间距公式,该裂缝间距由考虑粘结滑移和无滑移两部分组成,在理论上较符合构件在使用荷载作用下的开裂状况。

考虑到影响裂缝宽度因素众多,单纯的理论分析无法完全适用于实际工程,分析影响裂缝宽度的主要因素,舍弃次要因素,用数理统计的方法给出裂缝宽度计算公式势在必行,因此,1968年Gergely和Luta观察分析了大量试验数据,最终用数理统计方法给出了简单适用而又有一定可靠性的裂缝宽度计算公式,该公式被美国ACI318规范所采用。

之后的研究逐步修正和完善了以上四种理论,在计算公式中引入更多的参数,是的理论与试验数据更加吻合。

三、国内关于短期荷载作用下裂缝宽度的研究进展

我国关于钢筋混凝土结构裂缝宽度计算方法主要分为两类:半经验半理论法和数理统计法。

南京工学院,大连工学院和同济大学等高等院校在五六十年代便开始进行了大量的试验和理论研究,并提出了完整的裂缝计算体系,现行规范GB50010-2010中的裂缝计算公式即是基于南京工学院丁大钧裂缝研究组的试验成果而建立的。

2009年,东南大学于琦、孟少平[ ]以规范裂缝宽度计算思路为基础,加以修改,引入名义拉应力,建立起以名义拉应力表示的裂缝宽度计算公式,大大简化了计算,具有较高的精度。

2013年,郑州大学赵军根据钢筋钢纤维部分增强混凝土梁正截面受弯性能的试验研究成果,分析了钢纤维对平均裂缝间距、钢筋应变不均匀系数和钢筋应力的影响,提出了与普通钢筋混凝土梁裂缝宽度计算方法相衔接的钢纤维增强钢筋混凝土梁裂缝宽度的统一计算方法。

最近同济大学对非载荷裂缝进行的大量研究也取得了较好的成果。随着科学技术的快速发展,有限元分析法逐渐运用到结构分析中,为结构分析包括裂缝分析提供了便捷的工具。

四、长期荷载作用下钢筋混凝土构件裂缝宽度研究进展

在长期荷载作用下,钢筋混凝土构件的裂缝宽度将明显增大,而影响长期荷载作用下裂缝宽度增长的因素众多,加之开裂机理复杂及试验需要长期观测,因此现有的相关试验研究相对较少,也缺乏相对较完整的理论分析。国内外完成的部分具代表性的研究及结论如下:

早期,Brenedel和Ruhle便对8根钢筋混凝土梁进行了为期2年的加载,试验得出最大裂缝宽度为短期裂缝宽度的2倍,他指出导致裂缝宽度增长的主要原因是:(1)徐变引起应力重分布导致钢筋应力增加;(2)混凝土回缩,这主要是由于混凝土收缩与拉应力损失引起的。

2000 年,东南大学龚志国[ ]对两根变化配筋率的高强钢筋高强混凝土梁进行了为期一年的研究,该试验主要研究了长期荷载作用下的裂缝分布规律、裂缝宽度、挠度的增长规律,并用计算机对该类构件的长期变形进行了模拟分析。提出了与现行规范相衔接的高强钢筋高强混凝土受弯构件的裂缝宽度计算方法。

2008年,重庆大学傅剑平等对8根配置500MPa钢筋的T形截面简支梁进行了长期荷载试验,得出结论:配置500MPa钢筋试件的裂缝形态以及裂缝分布特点与配置335MPa级钢筋试件基本相同,但长期裂缝宽度明显加宽。同年,中南大学卢钦先等进行了钢筋混凝土构件长期裂缝宽度的研究,推导了考虑压区混凝土和裂缝间受拉混凝土收缩徐变等影响的长期裂缝宽度计算式。

针对钢筋混凝土构件长期荷载作用下的裂缝宽度,目前各国规范的规定不一。严格计算长期裂缝宽度的,如我国混凝土规范(GB50010-2010);在短期裂缝宽度上稍加考虑的,如英国混凝土规范(BS8110-2);未加考虑的,如美国混凝土规范(AC1318-14)。

五、结论与展望

裂缝宽度的较准确预测是钢筋混凝土结构裂缝控制体系中最基本、最重要的内容之一,其研究具有重大的现实意义和理论价值。现有的长期裂缝宽度计算公式,是将短期荷载作用下的裂缝宽度计算公式结合试验结果进行修正后而得到的,缺乏理论支撑,计算公式粗糙难以适应不断发展的多样性的工作环境,加之现有的长期试验结果离散性较大,各规范对影响因素考虑也不一,因此,为了更准确地预测钢筋混凝土构件的长期裂缝宽度,为设计者提供可靠的参考,提高结构长期裂缝控制效益和效率,有必要对钢筋混凝土构件的长期裂缝宽度计算理论进行深入研究。