首页 > 范文大全 > 正文

水溶性ZnSe量子点在快速灵敏检测牛分枝杆菌表面

开篇:润墨网以专业的文秘视角,为您筛选了一篇水溶性ZnSe量子点在快速灵敏检测牛分枝杆菌表面范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘 要 本实验以巯基丙酸作为稳定剂,在水相条件下快速合成稳定性好的水溶性硒化锌量子点(znse QDs),采用透射电子显微镜、X射线衍射、红外光谱、荧光以及紫外光谱法等对ZnSe QDs进行了材料表征。将得到的ZnSe QDs通过共价结合方式标记到牛分枝杆菌表面的MPB83蛋白抗体分子上,基于抗体与MPB83蛋白的特异性相互作用,建立了一种检测MPB83蛋白的光谱新方法。研究了pH值及温度对检测的影响,得到pH 8.5, 37 ℃为适宜的体系酸度和温度。在优化的实验条件下,MPB83蛋白浓度在44~528 mg/L范围内,QDs的荧光强度与蛋白浓度间呈现良好的线性关系,此方法对MPB83蛋白的检出限为4.4 mg/L。该方法为实现准确而及时的诊断牛结核病提供一定理论依据。关键词 ZnSe量子点; 牛结核病; 牛分枝杆菌; MPB83蛋白

1 引 言

牛结核病(Bovine tuberculosis,TB)主要是由牛分枝杆菌引起的一种共患传染病,被国际动物卫生组织定为B类动物传染病。调查发现牛分枝杆菌是人结核的重要病因之一[1],到目前为止尚未发现有效药物与疫苗用于牛结核病的防治。因此,准确而及时的诊断方法对于该病的防治尤为重要。目前唯一推荐的方法是牛型结核菌素皮内变态反应,但由于结核菌素可能包含有与其它分枝杆菌相同的非特异性抗原组份,检测时容易出现假阳性。因此,研究更加灵敏且特异的结核病新型诊断抗原方法,是控制牛结核病的当务之急。

牛分枝杆菌是细胞内寄生菌,MPB83蛋白是M.bovis感染机体后分泌的主要抗原之一[2],含有一段典型的脂蛋白序列[3]。MPB83蛋白是牛分枝杆菌的免疫主导蛋白,也是牛结核菌素的有效成分,能诱导很强的迟发型变态反应,刺激T淋巴细胞增殖和抗体产生。MPB83蛋白作为牛结核分枝杆菌中一个重要的B胞抗原靶,与牛结核分枝杆菌的毒力密切相关,在牛结核分枝杆菌的血清学检测方面具有一定的应用价值。Vordermeier等[4]将MPB83蛋白用于血清学诊断,结果表明这种蛋白在单独应用时能鉴别感染牛和免疫牛。

量子点(Quantum dots, QDs)是一种由IIVI、IIIV族元素组成的粒径小于或者接近激子波尔半径的纳米颗粒。目前,QDs已经开始广泛应用于电子学、光学、生物医学、环境科学等领域。但是,大量QDs是采用镉作为前体,由于镉的毒性和其红色发光区域等原因,其在生命科学和医学诊断中的应用受到一定限制。因此发射蓝色荧光的宽禁带IIVI族半导体ZnSe QDs,具有广泛的应用前景[5]。目前高荧光量子产量的ZnSe QDs多在有机体系中制备,制备过程需要高温和无水高压环境[6~8],可直接在水相中合成,具有环保、成本低、操作简单等优势[9,10]。由于免疫标记技术的应用,Lingerfelt将生物素化的QDs与免疫亲和层析技术相结合,用于最低检出浓度可达10 g/L蛋白质毒素的测定[11]。Chattopadhyay将QDs与多色流式细胞术相结合,用于免疫分型研究[12]。

在水相条件下,本研究合成无毒高稳定性ZnSe QDs,基于抗体与MPB83蛋白的特异性相互作用,建立了一种操作简便,线性范围较宽,灵敏度较高的测定微量MPB83蛋白的方法。本方法结合荧光分析以及特异性免疫技术,通过检测MPB83蛋白的含量间接得到牛结核分枝杆菌信息,为牛结核分枝杆菌检测提供了一定的理论依据。 2 实验部分

2.1 仪器与试剂

RF5301PC荧光分光光度计(日本岛津公司);Nanodrop 2000C紫外分光光度计(美国热电公司);JEM2010高分辨透射电子显微镜(日本电子株式会社);JDX10P3A X射线衍射仪(日本电子公司)。

乙酸锌、磷酸氢二钠和磷酸二氢钠、硼氢化钠(国药集团化学试剂有限公司);巯基丙酸(MPA, 阿法埃莎化学有限公司);1乙基(3二甲基氨基丙基)碳二亚胺盐酸盐(EDC・HCl,上海共价化学科技有限公司);硒粉(天津化学试剂研究所)。MPB83蛋白及其抗体由华中农业大学农业微生物学国家重点实验室提供,以上试剂均为分析纯。实验用水为二次蒸馏水。

2.2 实验方法

4 结 论

References

1 Dolin P J,Raviglione M C,Kochi A. Bull World Health Organ, 1994, 72(2): 213-220

2 Wiker H G. Scand. J. Immunol., 2009, 69: 492-499

3 Sheikhi A, Nazarian M, KhademAlMelleh A, Nasab N M, Esmaeilzadeh A, Yahaghi N, Sheikhi R. Int Immunopharmacol, 2008, 8(6): 887-892

4 Vordermeier H M, Cockle P J, Whelan A O, Rhodes S, Chambers M A, Clifford D, Huygen K, Tascon R, Lowrie D, Colston M J, Hewinson R G. Vaccine, 2000, 19: 1246-1255

5 Lin S L, Pradhan N,Wang Y J, Peng X G. Nano Letters, 2004, 4(11): 2261-2264

6 Dauplais M, Lazard M, Blanquet S, Plateau P. PLoSOne, 2013, 8(1): e54353

7 WANG HongJiang, LIU Ting, XIE Ji, SU WanYuan, GUO AiLing, CAI ZhaoXia. Chinese J. Anal. Chem., 2010, 38(5): 632-637

王洪江, 柳 婷, 谢 跻, 粟婉媛, 郭爱玲, 蔡朝霞. 分析化学, 2010, 38(5) : 632-637

8 ZHAO Bin, ZHAO SuQing, ZHOU LiHua, ZHANG Kun, ZHANG Jun. Chinese J. Anal. Chem., 2012, 40(6): 857-861

赵 斌, 赵肃清, 周丽华, 张 , 张 俊. 分析化学, 2012, 40(6): 857-861

9 HAO YanZhong,FENG Yun. Chem. J. Chinese Universities, 2008, 29(4): 788-792

郝彦忠, 酆 云. 高等学校化学学报 , 2008, 29(4): 788-792

10 AN HaiPing, LI Lan, ZHANG XiaoSong, WANG DaJian, HAN Xu. Chinese Journal of Liquid Crystals and Displays, 2006, 21(6): 620-624

安海萍, 李 岚, 张晓松, 王达健, 韩 旭. 液晶与显示, 2006, 21(6): 620-624

11 Lingerfelt B M, Mattoussi H, Goldman E R, Mauro J M, Anderson G P. Anal.Chem, 2003, 75(16): 4043-4049

12 Chattopadhyay P K, Price D A, Harper T F, Betts M R, Yu J, Gostick E, Perfetto S P, Goepfert P, Koup R A, De Rosa S C, Bruchez M P, Roederer M. Nat. Med., 2006, 12: 972-977

13 Wang B B, Huang X, Ma M H, Shi Q, Cai Z X. Food Control, 2014, 35: 26-32

Application of Watersoluble ZnSe Quantum Dots on Rapid and

Sensitive Detection of MPB83 Protein on Surface of

Mycobacterium Bovis

RUAN XiaoJuan1, WANG BeiBei1, MA MeiHu1, GUO AiZhen2, CAI ZhaoXia*1

1(Food Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China)

2(College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China)

Abstract A basic water phase method was used for synthesizing watersoluble ZnSe quantum dots (QDs) with 3mercaptopropionic acid (MPA) as ligands. The obtained MPAZnSe QDs were characterized by transmission electron microscopy, Xray powder diffraction spectrometry, ultravioletvisible spectrometry and fluorescence spectrometry. Then the prepared MPAZnSe QDs were conjugated with antiMPB83 antibodies to form the fluorescent probe. As a result of specific interaction, MPB83 proteins were selectively captured by immunized MPAZnSe QDs which led to the change of a fluorescent signal. Based on this, a fluorescencelinked immunoassay method was demonstrated for the detection of MPB83 proteins. The influence of pH and temperature were studied, thus the optimum reaction condition (pH 8.5, 37 ℃) were obtained. Under optimal conditions, the quenched fluorescence intensity increased linearly with the concentration of MPB83 proteins ranging from 44 to 528 mg/L with the detection limit of 4.4 mg/L. The approach provides theoretical basis for diagnosing bovine tuberculosis precisely and timely

Keywords Zinc selenide quantum dots; Bovine tuberculosis; Mycobacterium bovis; MPB83 protein

(Received 31 December 2013; accepted 23 January 2014)

This work was supported by the National Natural Sciences Foundation of China (No.31101290) 第42卷 2014年5月