开篇:润墨网以专业的文秘视角,为您筛选了一篇移动机器人路径规划技术综述范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘 要:移动机器人的设计与实现能够促进智能化应用的良好发展。路径规划技术是机器人实现移动功能的主要技术之一。路径规划技术主要包含局部规划技术以及全局规划技术等。本文从路径规划技术的作用入手,对移动机器人路径规划技术进行研究和分析。
关键词:移动机器人;路径规划技术;综述
DOI:10.16640/ki.37-1222/t.2016.21.135
0 前言
移动机器人的实现涉及自动控制、智能、机械等多种学科。它通常被应用在医疗领域、工业领域等方面。从整体角度来讲,移动机器人的应用促进了生产效率的显著提升。路径规划技术是移动机器人的关键技术之一,研究该技术具有一定的现实意义。
1 路径规划技术的作用
将路径规划技术应用在移动机器人中,能够产生的作用主要包含以下几种:
(1)运动方面。路径规划技术的主要作用是其能够保证移动机器人完成从起点到终点的运动。(2)障碍物方面。设计移动机器人的最终目的是将其应用在实际环境中,在实际环境下,移动机器人的运行路线中可能存在一定数量的障碍物,为了保证最终目的地的顺利达到,需要利用路径规划技术实现对障碍物的有效避开[1]。(3)运行轨迹方面。对于移动机器人而言,除了实现障碍物躲避、达到最终目的地这两种作用之外,应用路径规划技术还可以产生一定的优化运行轨迹作用。在移动机器人的使用过程中,在路径规划技术的作用下,机器人可以完成对最佳运行路线的判断,进而更好地完成相应任务。
2 移动机器人路径规划技术综述
移动机器人的路径规划技术主要包含以下几种:
2.1 局部路径规划方面
在局部路径规划方面,能够被应用在移动机器人中的技术主要包含以下几种:
(1)神经网络路径规划技术。从本质上讲,可以将移动机器人的路径规划看成是空间到行为空间感知过程的一种映射,因此,可以利用神经网络的方式将其表现出来。就神经网络路径规划技术而言,首先需要将相关传感器数据当成网络输入,并将网络输出看成是某固定场合中期望运动方向角增量。在这种情况下,原始样本集则可以用不同选定位置对应的数据代替。为了保证样本集数据的有效性,需要将原始样本集中的冲突样本数据以及重复样本数据剔除掉。对最终样本集应用模糊规则,实现神经网络的有效训练。当典型样本学习完成之后,移动机器人对规则的掌握水平发生了显著提升,进而使得移动机器人在产生智能性能的基础上,顺利完成相应运动[2]。
(2)人工势场路径规划技术。这种规划技术是指,将移动机器人在实际环境中的运动过程当成其在虚拟人工受力场中的一种运动。在虚拟人工受力场中,目标终点会对移动机器人产生一定的引力,而该受力场中的障碍物则会对其产生一定的斥力。在某固定算法的作用下,这两种不同的作用力会产生相应的势,进而形成势场。当移动机器人在该场中运动时,势场中的抽象力会作用在移动机器人上,使得其完成对障碍物的有效避开。在人工势场路径规划技术的实际应用过程中,由于结构简单等因素的影响,移动机器人在到达终点之前可能会停留在局部最优点位置上。对此,需要从数学的角度出发,对势场方程进行重新定义,通过这种方式排除势场中的局部极值,继而保证移动机器人运动的顺利进行[3]。
(3)遗传路径规划技术。这种路径规划技术建立在自然遗传机制等理论的基础上。这种技术通过变异、选择以及交叉对控制机构的正确计算程序进行合理编制,进而实现数学方式基础上生物进化过程的合理模拟。当移动机器人的适应度函数为正数时,允许适应度函数具有不连续或不可导特点。由于这种路径规划技术不涉及梯度信息,因此其能够更好地解决移动机器人在实际运动过程中遇到的问题。遗传路径规划技术的应用优势在于,它能够实现跟踪与规划的同时进行,因此,遗传路径规划技术通常被应用在具有时变特点的未知环境中。
2.2 全局路径规划方面
在该方面,可以被应用在移动机器人中的技术主要包含以下几种:
(1)栅格路径规划技术。这种技术是指,在将实际工作环境分成许多包含二值信息的网格单元的基础上,应用优化算法完成最佳路径的规划搜索。在这种规划技术中,其网格单元通常是由八叉树或者四叉树的方式表示出来。在该技术的应用中,栅格的作用是完成相关环境信息的记录。如果栅格中某位置的累计值相对较低,代表移动机器人可以从该位置通过;如果栅格中某个位置的累计值相对较高,则表示该位置存在障碍物,此时,移动机器人需要利用优化算法将该障碍物避开[4]。
(2)可视图路径规划技术。这种路径规划技术是指,将整个移动机器人看成一个点,然后分别将其与障碍物以及目标终点连接起来,上述连线要求为保证所连直线不会碰触障碍物。当所有连线都连完之后,即完成了一整张可视图。在该可视图中,由于起点到目标终点之间的连线都不涉及障碍物,因此上述所有连线都属于有效直线。在这种情况下,需要解决的问题主要是从这些连线中找出一条距离最短的连线。对此,需要应用优化算法将可视图中距离较长的连线删除,这种处理方式能够有效提升移动机器人的搜索时间。
(3)拓扑路径规划技术。这种规划技术是指,将移动机器人的移动范围,即规划区域分成多个具有拓扑特征的子空间,然后利用不同子空间之间的连通性完成拓扑网络的构建。当该网络构建完成后,直接从网络中找出能够使得机器人顺利从起点移动到终点的拓扑路径,将所得的拓扑路径作为参考依据完成几何路径的计算。这种规划技术的劣势主要表现为其拓扑网络的构建过程较为复杂。但这种规划技术可以实现移动机器人搜索空间的有效缩小[5]。
3 结论
路径规划技术主要分为局部规划和全局规划两方面。这两方面分别包含人工势场路径规划技术以及神经网络路径规划技术等。应用这些规划技术之后,移动机器人可以在避开障碍物的基础上,顺利完成起点到终点最优运行轨迹的运动。
参考文献:
[1]朱大奇,颜明重.移动机器人路径规划技术综述[J].控制与决策,2010(07):961-967.
[2]张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005(02):439-443.
[3]鲍庆勇,李舜酩,沈`,门秀花.自主移动机器人局部路径规划综述[J].传感器与微系统,2009(09):1-4+11.
[4]孔峰,陶金,谢超平.移动机器人路径规划技术研究[J].广西工学院学报,2009(04):70-74.
[5]邬再新,李艳宏,刘涛.多移动机器人路径规划技术的研究现状与展望[J].机械,2008(01):1-3+16.
基金项目名称:基于ARDUINO模块化装卸机器人的研究与开发(省教育厅 13C602 )