开篇:润墨网以专业的文秘视角,为您筛选了一篇散热仿真技术在新能源电力电子行业中的应用范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
[摘 要]散热仿真技术能够提高电力电子产品的设计水平,缩短开发周期,降低成本。在新能源电力电子行业中,具有广阔的应用前景。本文主要以本文以变频空调电子散热仿真优化设计为例,来探讨散热仿真技术在新能源电力电子行业中的应用问题。
[关键词]散热仿真技术;新能源;电力电子
中图分类号:TM1 文献标识码:A 文章编号:1009-914X(2015)42-0351-01
一、新能源电力电子技术行业概析
电力电子技术是有效利用电力半导体器件,应用电路设计理论及开发工具,实现电能高效能变换与控制技术。该项技术主要是以电子技术、电力技术和控制技术为基础,其中,电子技术是硬件基础,电力技术是主要应用范围,控制技术则是软件算法的主要实现形式。电力电子技术在智能电网、轨道交通和国防军仁等国民经济重要行业,以及新能源、新能源汽车和节能环保等战略新兴产业中有着广泛的应用。电力电子行业,就是对所有采用电力电子技术、研制生产电力电子器件和电力电子设备、提供相关设计与施工服务一大类现代工业基础行业的总称。整体来看,国内新能源电力电子产业可划分为三个环节:上游的电力电子元器件(产业链上游)、中游的电力电子设备(产业链中游)、下游的电力电子的行业应用(产业链下游)。其中,电力电子设备正朝着高性能化、智能化、全数字控制、系统化和绿色化发展。由于电力电子技术是实现节能高效、升级传统产业的关键技术,因而,整个电力电子行业也在倡导节能环保的当下,迅速成为当今世界上新兴节能的先锋。
二、散热仿真技术
散热仿真技术,就是用CFD(计算流体力学)来对散热性能进行模拟,以评估温度分布、对流设计是否合理、高效,是否符合设计指标要求。利用散热仿真技术,能够提高电力电子产品的设计水平,缩短设备等产品研制周期,降低成本。在设备研发初期,利用散热仿真软件进行仿真分析,为设计者提供设计依据和参考,是未来产品设计的大势。
电子元器件及电子设备在工作过程中,输出功率仅占到设备输入功率的一部分,其功率损失通常都以热能的形式散发出来。在电子元器件及电子设备功率密度的不断增加,温度已成为影响其可靠性的主要因素之一。随着温度的升高,电子元器件及电子设备的失效率呈指数增长趋势,一般地,环境温度每升高10 ℃,失效率增大1倍以上,因此称为10 ℃法则。据统计,超过 55%的电子设备的失效是由温度过高引起的。因此,为了避免电子设备在工作过程中,因温度过高而影响电子器件正常工作和运行,就需要在进行结构设计时增加散热功能设计。
三、散热仿真技术在新能源电力电子行业中的应用研究
本文以变频空调电子散热仿真优化设计为例,来探讨散热仿真技术在新能源电力电子行业中的应用。目前,变频室外机的电子元器件散热器的相关参数一般都是设计人员根据经验设计的,为确保保证产品运行的可靠性,散热器各设计参数的裕度通常设计的也比较大。其缺点是散热器开发初期需要不断进行实验测试,导致开发周期变长,开发成本过高。通过CFD 数值仿真计算,能够优化电子元件散热器的性能,降低散热器成本,缩短开发周期,提升变频空调控制器运行的可靠性。本文以某款分体式变频空调室外机的主要电子散热元件及与之相关的散热器为研究对象,运用先进的CFD 方法,并结合相关实验测试的方法,进行计算及详细的对比,验证仿真计算的准确性,并对散热器方案进行仿真优化设计。
初步CFD 仿真计算校核
以某变频空调室外机为研究对象,建立计算的三维模型,通过CFD 仿真软件进行三维定常数值模拟计算,在仿真计算时,将轴流风扇简化为二维模型,设定其速度大小(或风机特性曲线)及出流方向,进口为环境边界条件。计算仅考虑该变频室外机的四个主要发热元件(IPM、二极管、IGBT、整流桥),其他热损耗小的电子元件忽略不计。图1是仿真计算建立的三维模型,图2 是该款变频室外机的散热片示意图。
由于运用电子元件运行的工况复杂性,运用测试仪器难以得到电子元件的真实热功耗,所以,仿真计算首先任务是需要预估各款电子元件的热功耗值。先研究四个主要电子散热元件中的两个元件之间的功耗变化对各自的温度及最高温度 Tmax(4 个元件的最大温度值)的影响,图3、图4分别为仿真计算的预估 IGBT- 整流桥及二极管 -IGBT 对 Tmax的影响曲线。将电子元件的所有以下组合 IPM- 二极管、IPM-IGBT、IPM- 整流桥;二极管-IGBT、二极管 - 整流桥;IGBT- 整流桥,按照如上的思路研究其功耗预估对 Tmax的影响,并将其与实验测试的 Tmax及其他的测点温度值进行比较,从所有的仿真数据里选择一组与实验的测点温度值比较接近的功耗预估值作为最终校核准确的温度值,其预估的功耗值即为各个元件的功耗值。
四、结论
借助热仿真分析软件可以快速、准确地得到系统的热设计分析结果,给出设备的温度场分布以及元器件温度,从而使设计者对设备的散热能力有直观、准确的了解,及时发现设计中的问题并予以修改,迭代进行设计和仿真,使其最终满足技术要求。
通过CFD仿真计算方法对该款变频室外机的风道、电子散热元件以及散热器进行分析,说明电子散热的 CFD 仿真计算具有一定的准确性,可以为设计方案提供方向性的指导。对于此类变频室外机,虽然中间隔板打孔可降低各电子元件的温度(3℃左右),但是同时也增加了风机侧低频噪声与压缩机侧高频噪声的相互影响,恶化了噪声音质。所以当变频室外机运行工况下的电子元件温度过高时,可以考虑采用此种方法来实现降温;在变频室外机运行工况下的电子元件温升正常情况时,不建议采用此种方法。
参考文献
[1] 季双.微电子芯片的热仿真分析[D].北京交通大学,2009.
[2] 卢锡铭.电子设备热仿真及热测试技术研究[J]. 舰船电子对抗,2013,03:118-120.