首页 > 范文大全 > 正文

文献与人才社会网络论文

开篇:润墨网以专业的文秘视角,为您筛选了一篇文献与人才社会网络论文范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

1数据源和分析流程

1.1以WebofScience为数据源

以WebofScience作为数据源,进行检索和筛选数据。论文以生物材料学科为例,分析科研人员及其团队,为学校挖掘可引进的人才,也为学校人才引进提供评估参考材料。

1.2分析流程

(具体见图1)论文采用h指数、R指数、AR指数作为衡量学者科研水平的3个量化指标。h指数不能区分h值相同但论文被引频次相差悬殊的情况,缺乏一定的灵敏度和区分度,结合采用了R指数、AR指数,解决h指数存在的一些不足[9]。

2以生物材料为例的应用分析

2.1基础数据检索与清洗、筛选

选取检索源:Webofscience的SCIE数据,因webofscience数据存在滞后,为保障期刊论文数据的完整性,选择数据库时间范围为:2003-2012(10年),具体检索时间:2014.3.10。论文采用了材料科学-生物材料作为案例进行检索分析,假设某学校想引进生物材料方面的学者。选择的期刊以JCR-Q1期刊为参考,选取了webofscience的“MATERIALSSCIENCE,BIOMATERIALS”类目的Q1期刊,共六种期刊。通过webofscience检索出版物名称=(″BIOMATERIALS″or″ACTABIOMATER″or″EURCELLSMATER″or″DENTMATER″or″MACROMOLBIOSCI″or″BIOFABRICATION″),时间跨度=2003-2012,检索结果:13179条。筛选出:article、review两种类型文献12970篇。

2.2作者基础排序分析

以webofscience的分析功能,选取排序前10位的发文作者,见表1列出了前10位作者及其发表的论文数量,论文中分别以A1、A2…标示各位作者。论文在此研究中,暂不考虑作者在论文中的贡献度,即不区分第一作者、通讯作者或是所处的其他合作位置。在webofscience中,作者名称基本采用了姓氏加名的首字母,存在较为严重的同名作者问题。考虑作者的同名现象,对每位作者结合作者机构进行较为精确的分析。在webofscience中作者同名问题基本没有得到解决,需要通过人工筛选才能达到精确。对上述10位学者对应的文献进行逐篇查看,可以确定出该检索集中,有3个作者姓名简称对应了多位学者,如对A3的70篇文献中的前20篇进行逐篇查看,20篇论文属于16位不同单位且姓名简称同为A3的学者。同样发现A9和A10具有多位学者共同构成论文篇数,均被排除出前10的位置。通过逐篇查看,筛选出排名前7的学者。

2.37位学者h指数、R指数、AR指数分析

对筛选出的前7名学者,进行SCI论文检索,检索时间范围为:2003-2012,检索日期为2014.3.16,文献类型为ARTICLE或REVIEW。因为涉及同名、作者曾在不同单位任职等现象,结合webofscience的“惟一作者集”等作者辅助检索工具,进行筛选。2.4A7学者及其团队的挖掘分析论文选用SATI文献题录信息统计分析工具[10]和UCI-NET社会网络分析软件[11]对A7的SCIE论文进行分析。通过分析挖掘与A7有更多直接合作关联的学者,拟挖掘“他们”作为某学校生物材料方面的外聘人才。利用两个软件,构建了如图3所示的A7的作者合作网路。从图3可以发现A7的合作网络错综复杂。利用k-核概念,研究网络合作的凝聚子群。所谓k-核是指如果一个子图中的全部点都至少与该子图中的k个其他点邻接,则称这个子图为k-核[11]。通过k-核,可以发现一些高合作、高凝聚的群体。对A7的社会网络进行k-核分析,如图4所示为A7文献作者k-核分析的部分截图。由图4可见,在A7的392篇文献的所有合作者中,可以进行8种分区,度数分别为2,3,4,5,6,7,8,9,即分别为2-核,3-核,……,9-核。9-核即是指A7和其他34位学者(图4所示的作者编号P1、……、P84)共同组成各个作者之间至少有9个邻接的子群,可能是学科团队、或项目合作的团队,其中可能存在一些具有知识引导的团队带头人。计算A7合作网络中学者们的在整体网络中个体密度值,图5为截取其中部分学者的个体密度值计算。从图5可以得出这个整体网中各个个体(科研人员)的密度值、及其他指标值。A7的个体密度值最低,值为9.44,Broker和EgoBet值最高,分别为3791.00、2927.17,他这个作者群网络中的知识引导人、合作引导人,其位置占据了结构洞位置,是作为“桥”位置者。结合图5所示的9-核团队,在这些学者中,P1的网络规模最大(值为45.00),密度是19.90,Broker值是793,EgoBet值是326.90,仅次于A7,在其合作网络中,占据结构洞位置,可作为引进人才或外聘的人选。P3密度值为27.92,Broker值为253,EgoBet值是98.46,在合作网中与他人有合作、也有一定的知识引导作用。从图5也可以发现,学者P7的密度值最大,为100,Broker和Ego-Bet值均为0,在个体网中的中间性不强,不占据结构洞位置,可以猜测其为求学的学生或是某个项目的参与者。根据上述分析,P1和P3可作为外聘或引进的人选。对这两位学者,同样计算其2003-2012年期间的h指数、R指数、AR指数,通过和表3学者的各个指标进行比较、衡量。P1的各位指数都高于P3,且与表3中的7位学者的∑(h,R,AR)值进行排序,排列第4。

3结论与进一步思考

(1)文献是科研工作的成果积累,图书馆以学术文献为分析源进行评价分析,从第三方的角度,可以较为客观评估学者的学术水平,为学校引进人才提供参考建议。学科人才评价、学科团队挖掘中,在开展同行评议的同时,学校可以采用学者已发表的文献评估作为有效补充。(2)采用h指数、R指数、AR指数,综合考察学者的学术排名,有效消除了h指数存在的不足,较为完善地评价了学者相对学术水平。利用社会网络分析,分析科研团队,根据密度值、K-核分析等分析核心成员。图书馆可以结合自身优势,开展相应的人才评估情报服务,用于对学者进行挖掘、评估,为学校提供有意义的分析报告。(3)R指数、AR指数有效弥补了h指数不足,但传统的引文指标在数字出版时代、原创作品更多实现开放获取的时代,分析力度显得有些不足。社会网络驱动下,可以结合altmetrics补充计量学指标,例如文献管理系统(如Mendeley)、researchgate平台、评论、博客微博网络分享等,实现从学者多维的综合评估到学者的分析挖掘。(4)对于引进人才的评估,文献计量分析与评价只是一个角度,仅作为一种信息源参考,全面引进评估需要结合同行专家评议、个人累计信用评价、引进后期的评估等,构建完善的评估体系。

作者:金洁琴 单位:南京工业大学图书馆