首页 > 范文大全 > 正文

浅谈爆破泄压技术在预防治理煤矿冲击地压灾害中的应用

开篇:润墨网以专业的文秘视角,为您筛选了一篇浅谈爆破泄压技术在预防治理煤矿冲击地压灾害中的应用范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:本文在分析赵楼煤矿地质开采环境特征的基础上,探讨了冲击地压形成的内外因和内在斑裂产生的机理。建立健全了灾害预测防治体系,提出了爆破卸压治理防护措施。

关键词:冲击地压 爆破泄压 预防治理

中图分类号:C35 文献标识码: A

Is shallow to talk to blow up to leak to press the technique manages coal mine impact in the prevention ground press disaster in of application

Wang Ji Bin

(Medium coal five set up a 49th project office, Han Dan in Hebei 056003)

Summary:this text mine the foundation of environment characteristic in the analytical Zhao Lou coal mine geology up, inquired into impact ground pressing formatively inside the outside because of and the inside spot split output mechanism.Building up is sound disaster to predict to prevent and cure system and put forward to blow up to unload to press to manage protection measure.

Keyword:the impact ground press to blow up to leak to press to prevent from managing

引 言

冲击地压是采场周围煤岩体,在其力学平衡状态破坏时,由于弹性变形能的瞬间释放而产生一种以突然、急剧、猛烈破坏为特征的动力现象。冲击地压是一种特殊的矿山压力显现。其显现强度特征一般为弱冲击、强冲击、弹射、矿震、岩爆、煤炮、冲击波、弹性振动等,常伴有煤岩体抛出、巨响及气浪等现象;其发生突然剧烈,冲击波力量巨大,瞬间摧毁巷道、采煤工作面和设备,伤击人员。据统计,山东省从1996年至2005年3月份,先后有13处煤矿发生冲击地压灾害,发生破坏性冲击地压353次,死亡28人,重伤65人,摧毁巷道8 000余米。

近年来,随着矿井开采深度的不断增加和开采条件的日趋复杂,兖州矿区厚煤层开采的大部分矿井相继发生冲击地压或矿震事故,对矿井安全生产构成了严重威胁。赵楼煤矿为新建矿井,虽然尚未发生过冲击地压或矿震现象,但是赵楼煤矿开采深度大,地应力高,老顶中砂岩岩层厚度较大,3煤由北京煤科院开采研究所鉴定具有强冲击倾向性且因火成岩侵入导致局部变质影响,区域内断层构造发育,1302运顺在掘进期间,已经发生了多次强矿压显现,对矿井的安全生产造成了严重威胁,因此,加强煤矿冲击地压灾害的预防与治理工作是煤矿安全生产工作当中急需解决的重大问题。

1 冲击地压发生的原因

冲击地压发生原因有内因、外因2种因素:内因包括煤层本身的物理属性、煤层原岩应力状态;外因包括采深、采动集中应力放炮诱发等。

1.1 冲击地压发生的内因

(1)煤层具有冲击倾向性

冲击地压的发生与煤岩体物理力学性质有直接关系。煤科总院北京开采所岩石力学实验室对赵楼煤矿3#煤层冲击倾向性试验结果表明,赵楼煤矿3#煤层具有强烈冲击倾向性,其直接顶具有中等冲击倾向性。

(2)砾岩活动是发生冲击地压的主要力源

赵楼煤矿3#煤层上方基本顶为30余米厚的砂岩层,随着工作面的推进周期性跨落;再上部500~800 m的巨厚砾岩层,砾岩层完整性较强,抗压及抗拉强度均较大,采后不易冒落下沉,导致砾岩层与红土层之间产生离层空间。随着采空面积的加大,巨厚砾岩层形成板状悬空岩梁,砾岩层原来的应力状态发生改变,从而增加了未采3煤层的应力水平。当板状砾岩层悬露面积达到一定程度后,开始缓慢下沉并周期性断裂跨落,砾岩层的断裂跨落对下部的煤岩体产生冲击载荷,从而加剧了3层煤工作面煤体的应力集中程度,导致3#煤层工作面冲击危险增强,因此,巨厚砾岩层是发生冲击地压的主要力源。

1.2 冲击地压发生外因

(1)采深大应力高

赵楼煤矿首次冲击地压发生在-538m水平,垂深为668 m,即冲击地压发生临界深度为668m,开采大于该深度就有可能发生冲击地压。目前3煤层工作面开采深度已达940m,已远远超过该深度。随着工作面采深的加大,自重应力已超过3层煤的抗压强度,较高的原岩应力易使煤体产生应力集中而破坏。

(2)工作面采动集中应力和周期来压的影响

观测结果表明, 3层煤工作面超前支承压力集中范围为5~35m,应力集中系数为2.5,但上方砾岩层的超前压力影响范围达120m。因此, 3层煤工作面采动集中应力对工作面影响较为明显。3煤层分层开采时上分层工作面周期来压强度最大达510 kn/m2,来压较为强烈。据统计, 3煤层冲击地压80%发生在顶板来压期间,且对工作面超前压力影响范围破坏最为严重。

(3)工作面推采速度的影响

回采工作面推采过大后,工作面煤体集中应力得不到及时释放,容易造成应力集中,因此工作面推采速度也是影响冲击地压发生的因素之一。

(4)放炮诱发

回采工作面放炮容易造成煤岩体能量释放,因此工作面放炮是诱发冲击地压的主要工序,据统计,赵楼煤矿放炮诱发冲击地压占75%以上。

2 冲击地压的分类

冲击地压是一种复杂的矿山动力现象,其生成环境、发生地点、宏观和微观上的显现形态多种多样,以及它的显现强度和所造成的破坏程度相差很大。

目前主要的、最有价值的分类方法有以下几种:

(一)根据冲击地压的物理特征,按发生原因分(分为三类)

1.压力型冲击地压

其发生时,煤柱和岩石将产生爆炸式破坏,如同坚硬的岩样在试验机上加载至强度极限后发生爆炸式破坏一样。

2.突发型冲击地压

其发生原因是突然加载。是矿层上伏的厚而坚硬的老顶悬伸在矿柱上,先是夹紧矿柱并对它加载。当达到一定跨度时发生折断和垮落,同时产生压力波,造成处于极限应力状态的矿柱发生瞬时破坏。

3.爆裂型冲击地压

其发生原因是在直接顶上部或直接底板下部存在塑性夹层。例如,在刚性岩层之间的粘土夹层,一旦条件适当被挤压出来,造成顶底板刚性岩层以冲击形式爆裂。

(二)根据冲击地压的能量特征,按冲击时释放的地震能大小分(分五个等级,表1-1)。

表1-1 按能量特征分类表

1. 微冲击

表现为小范围岩石抛出和矿体微震动,包括射落和微震。射落是表面的局部破坏,表现为单个煤(岩)块弹出,并伴有射击的声响。微震是母体深部不产生粉碎和抛出的局部破坏,常伴有声响和岩体微震动。

2. 弱冲击

少量煤(岩)抛出的局部破坏,伴有明显的声响和地震效应,但不造成严重损害。

3. 中等冲击

急剧的脆性破坏,抛出大量岩石,形成气浪,造成几米长的巷道支架损坏和垮落,推移或损坏机电设备。

4. 强烈冲击

使长达几十米的巷道支架破坏的垮落,损坏机电设备,需要大量的修复工作。

5. 灾害性冲击

使整个采区或一个水平内的巷道发生垮落。个别情况下波及全矿,造成整个矿井报废。

(三)根据参与冲击的岩体类别分(分为二类)

1.煤层冲击(煤爆)

产生于煤体―围岩力学系统中的冲击地压,是煤矿冲击地压的主要显现形式。

2.岩层冲击(岩爆)

高强度脆性岩石瞬间释放弹性能,岩块从母体急剧、猛烈地抛出。对煤矿,是顶底板岩层内弹性能的突然释放,又称围岩冲击。按冲击位置又分顶板冲击和底板冲击。顶板冲击按显现形式又可分成典型的顶板冲击和致密顶板岩层突然折断形成的冲击矿压,后者往往伴生强烈的煤层冲击与底板冲击。

3 冲击地压灾害预测预报及治理

3.1 冲击地压灾害预测方法

(1)经验类比法

经验类比法是预测采区或工作面冲击危险程度和区域的常用方法。工作面开采或巷道掘进前,利用经验类比法对工作面进行冲击危险程度划分,采空区边缘、断层附近、煤柱区等均为冲击危险程度相对较高的部位,应优先进行防冲治理。

(2)煤粉监测法

煤粉监测是操作方便、效果明显的一种冲击危险监测措施。监测方法:使用MSZ 12电煤钻、Φ42套节麻花钎子配Φ42钻头打眼,从孔口开始每米收集1次煤粉,并用弹簧秤称其重量记录在记录表上,每打完1个孔,必须立即将结果填入记录表,当监测煤粉量超过危险煤粉量时,预报有冲击危险。再利用电磁辐射法进行校核监测,当两种监测手段均有冲击危险时,应及时实施卸压爆破,炮后再打1~2个煤粉监测孔,校验卸压效果,如不能消除冲击危险,必须继续实施卸压爆破,直至消除冲击危险。

(3)工作面矿压监测法

每班对上、下平巷超前支柱进行阻力监测,找出工作面超前支承压力影响范围及应力集中系数,确定超前支护距离及方式。根据阻力大小预报工作面顶板来压及应力集中区域。在工作面中部布置2个测区,测区间距20m,每个测区包括2个支架,重点对工作面支架阻力进行循环监测,然后画出监测曲线,预测工作面顶板来压情况,结合其他监测手段预报工作面冲击危险度。同时对每个支架都安设自动测压表,一方面可以对支架初撑力进行监控,另一方面可以对工作面顶板来压情况进行全面预报分析。

(4)钻孔应力计监测法

在工作面上、下平巷超前100 m均匀埋设钻孔应力计,对巷道煤体应力变化情况进行监测。钻孔应力计设在上平巷下帮、下平巷上帮,孔口距底板0. 5m,沿煤层倾角布置,孔距20 m,孔深10 m。每小班监测2次,画出每台应力计的监测结果,找出应力集中地点及集中范围,配合其他手段实现工作面冲击危险的准确预报。

3.2 冲击地压灾害治理

卸压爆破是对已形成冲击危险的煤体,用爆破方法减缓其应力集中程度的一种解危措施。实施卸压爆破应采取深孔爆破方法,孔深应达到支承压力峰值区。装药位置越靠近峰值区,炸药威力越大,爆破解除煤层应力的效果越好。

卸压爆破能同时局部解除冲击地压发生的强度条件和能量条件。即在有冲击危险的工作面卸压和在近煤壁一定宽度的条带内破坏煤的结构(但不落煤),使它不能积聚弹性能或达不到威胁安全的程度。这样在工作面前方形成一条卸压保护带,如图5-9所示,隔绝了工作空间与处于煤层深处的高应力区。显然,从防治冲击地压的角度看,用适量的炸药,爆破出尽量宽的保护带为好。根据多年的观测实践证明,如果能保证在工作面前方和巷道两帮始终保持一个宽为5~10m的保护带,就能防止冲击地压的危害。

图5-9 卸压爆破示意图

卸压爆破属于内部爆破,主要物理作用是使煤层产生大量裂隙。试验表明,爆破使炮孔周围形成破碎区和裂隙区,破碎区远小于裂隙区。径向裂隙穿过切向裂隙,说明径向裂隙扩展在前,切向裂隙形成在后,如图5-10所示。爆破后,冲击波首先使煤体破裂,继之爆生气体进一步使煤体破裂,在气体压力作用下,煤体沿径向移动,形成切向拉应力,产生径向拉破裂。随着裂隙的扩展,气体通过裂隙扩散到煤体中,与煤体产生热交换,同时气体的体积增大,而温度和压力下降。当裂隙前端的应力强度因子小于断裂韧性时,裂隙停止扩展。当压力小于临界值时,因原先受压贮存在煤体中的弹性能释放,使煤体向炮孔中心移动,在煤体中产生径向拉伸作用,导致切向破裂。但径向裂隙的扩展远大于切向裂隙。造成煤层性质变化的主要因素是径向裂隙。

图5-10 实验室装置和裂隙分布

a―爆破试验装置;b―裂隙分布

根据弹塑性理论,把采煤工作面简化为平面应变的力学模型。以鲍店矿为例的计算结果表明,卸压爆破使煤壁前方的支承压力重新分布,应力梯度变小,峰值压力移往煤体深部7m以远,如图5-11所示。屈服区比爆破前增加近一倍,能量密度明显减小。

图5-11 支承压力分布曲线

说明:实线为爆破前,虚线为爆破后。

综上所述,卸压爆破在煤体中产生大量裂隙,使煤体的力学性质发生变化,弹性模量减小,强度降低,弹性能减少,破坏了冲击地压发生的强度条件和能量条件。由于煤体内裂隙的长度和密度增加,按照失稳理论,还具有致稳作用和止裂作用,防止了冲击地压的发生。

实施卸压爆破前必须先进行钻屑法检测,确认有冲击危险时才进行卸压爆破,爆破后还要用钻屑法检查卸压效果。如果在实施范围内仍有高应力存在,则应进行第二次爆破,直至解除冲击危险为止。

为了安全生产,通过卸压爆破在工作面前方和巷道两帮形成一个有足够宽度(大于3倍采高)的卸压保护带。所以卸压爆破的深度,对巷道两帮应等于保护带宽度,对采煤工作面应等于保护带宽度加上工作面进度。

爆破孔的孔深取决于卸压深度,一般要求等于或大于整个应力集中区的宽度。由于孔深药量多,为保证殉爆可用导爆索连接加强引爆。为使药卷能装到孔底,可先把药卷装在软管里或用非金属材料绑扎后进行装药,如图5-12所示。

1―弯曲的炮泥卷;2―钻孔(直径50mm);3―带滑动保护罩的侧翼炮泥;4―药卷软管;5一导爆索;6一引爆线;

爆破孔布置方式应根据具体条件确定。通常用煤电钻打眼,孔径50~55mm,孔间距4~10m,每孔装药量按不超过孔深一半计算,一般为1.5~3.0kg。钻孔不装药部分必须填满水炮泥或粘土炮泥。躲炮距离150m,躲炮时间30~40min以上。

总 论:当监测到有冲击危险后,应立即实施卸压爆破。卸压孔深7~10m,孔间距不>5 m,每次引爆4~5个卸压孔,以提高卸压效果。采用顶板爆破预防措施时,应首先考虑本工作面爆破为下一临近工作面预防冲击的措施。爆破前必须摸清顶板岩性及结构,明确爆破的层位,选择合理的爆破参数,实践证爆破泄压技术预防治理煤矿冲击地压灾害应用中是一种行之有效的技术手段。

作者简介:王冀斌(1982.10~),男,河北邯郸人,助理工程师,从事煤矿技术工作。参考文献:

[1] 郭惟嘉,沈光寒,闰强刚.华丰煤矿采动覆岩移动变形与治理的研究[J].山东矿业学院学报, 1995。

[2] 王利,许兴胜,肖尚红.科学治理重大灾害实现矿井长治久安[J].科学与管理, 2004。