首页 > 范文大全 > 正文

离合器壳体砂型低压铸造工艺的研究

开篇:润墨网以专业的文秘视角,为您筛选了一篇离合器壳体砂型低压铸造工艺的研究范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:轿车变速箱离合器壳体属于形状复杂的薄壁铝合金壳体,在以往的试制阶段中采用砂型重力浇注,废品率高。提出了采用砂型低压铸造工艺开发离合器壳体毛坯的设想,通过研究离合器壳体的结构特点,结合低压铸造原理,设计低压浇注工艺。利用计算机数值模拟验证和优化工艺参数,通过砂型低压铸造工艺开发的毛坯具有制造成本低、周期短、废品率低的特点,并在某品牌轿车项目开发中得以成功运用。

关键词:薄壁壳体;低压铸造;仿真模拟

中图分类号:TG2 文献标志码:A 文章编号:1005-2550(2013)03-0066-06

本次开发的变速箱上的铝合金离合器壳体,在试制阶段要求在45天内交付60件合格毛坯,费用控制在20万以下。为满足高质量、短周期、低成本的试制要求,选择合适的铸造工艺非常关键。

铝合金离合器壳体毛坯在量产阶段通常采用金属型高压铸造工艺,模具成本高、制造周期长,不能满足试制阶段项目开发进度和成本要求。公司在以往的试制阶段一般采用砂型重力铸造工艺,模具成本低、试制周期短,但是对于离合器壳体这种外形尺寸大、壁厚不均匀的薄壁件,其浇注系统设计复杂、造型难度高、工艺出品率较低;另外,由于砂型温度低,在浇注过程中铝液降温幅度大,在薄壁部位容易产生浇注不足或冷隔缺陷,在厚大部位,即使采用冒口补缩,其作用也比较有限,易产生缩松缺陷。而为此提高浇注温度又会带来熔体含气量高,容易产生缩孔等缺陷的问题,其毛坯质量不能满足试制要求。

低压铸造也是汽车零部件生产中常用的铸造工艺,一般采用金属型结合砂芯的方式来实现复杂铸件的生产。低压铸造相对重力铸造而言,金属液在压力下充型和结晶,具有充型平稳、浇注过程及工艺参数可自动控制等特点,用低压铸造工艺生产铸件具有合格率高、质量稳定及出品率高等特点,但是金属型低压铸造的模具费用和制造周期还是不能满足试制要求。

本文提出采用树脂砂型低压铸造工艺的设想,将低成本的树脂砂型和低压铸造工艺有机的结合,达到低成本、高质量、短周期的试制目的,通过对离合器壳体铝合金铸件的结构分析,结合砂型低压铸造工艺原理,设计铸件低压铸造浇注系统和低压铸造工艺方案。利用计算机数值模拟技术对铸件进行充型、凝固、缺陷模拟,根据模拟结果,修正铸件浇注系统和工艺方案。

1 铸件结构分析

1.1 产品技术要求

1.2 工艺可行性分析

该壳体的铸造难点是外形尺寸大、薄壁且壁厚不均匀。采用金属型压铸工艺完全能够满足生产要求,而对于砂型铸造而言,由于铸型在常温下浇注,铸型温度低,4 mm的壁厚相对过薄,在常规重力浇注下很难保证铸件成型完整。而一些厚大部位,特别是螺栓连接部位,在压铸时可以用型芯保证不至于壁厚过厚,同时压铸工艺上可以采用布置冷却通道的手段进行规避,而砂型铸造时这些孔难以成型,一般采用填平后续加工的方法完成,这就人为加大了铸件壁厚的不均匀性。铝合金属于低密度合金,在重力作用下的补缩作用有限,因此在厚大部位产生缩松缺陷很难避免。而采用低压浇铸工艺,合金液浇注时在可控的压力作用下充型,大大提高了金属液的充型能力和补缩能力,辅之以冒口进行补充,有效地减少或避免缩孔缩松等铸造缺陷,提高铸件质量。

2 低压铸造原理

本次试制采用树脂砂型低压铸造工艺,树脂砂固化后强度高,完全能够满足压力下成型的要求[4]。树脂砂经充分混合后在铝质模具中造型固化,脱模后再进行组芯合模,由于铸型内腔要承受一定压力,铝液极易从分型面流出或射出,因此要采用夹具将铸型固定牢固。

3 低压铸造工艺设计

3.2 砂芯造型

3.3 确定低压浇注工艺参数

3.3.1 浇注温度

由于合金液在压力作用下充型,其充型能力高于重力浇注,合金液在密封状态下浇注,散热慢,其浇注温度可比一般铸造方法低10℃~20℃[6]。浇注温度根据铸型条件、铸件壁厚、铸件结构及合金种类等条件确定,在保证铸件成形的条件下,温度较低为宜,因为浇注温度低可以减少合金液的吸气和收缩,使铸件产生气孔、缩孔、缩松、内应力、裂纹等缺陷的概率减少,本铸件的浇注温度取730℃左右。

3.3.2 充型、凝固压力与时间

(1)加压充型阶段

(2)保压结壳阶段

保持充型压力一段时间,使铸件表层形成一定厚度壳,在增压结晶时可以避免合金液渗入砂型中,减少机械粘砂机会[6]。在不产生粘砂和跑火的前提下结壳时间越短越好。

(3)加压凝固阶段

铸件结壳后在充型压力P1的基础上增加压力至结晶压力P2,使铸件在压力下结晶凝固。结晶压力越高铸件组织越致密,但受砂型强度的限制,压力不能太高,根据经验取凝固压力45 kPa。

(4)保压凝固阶段

保持结晶压力P2一段时间使铸件完全凝固。保压时间长短对铸件质量和生产效率有明显影响。保压时间与铸件结构、铸型条件等有关,通常取铸件凝固后,残留浇道长度一般控制在20~50 mm为宜。到目前为止,保压时间的确定没有较方便实用的计算公式,在铸件凝固模拟时可以通过模拟凝固状态,初步得到铸件保压时间。

3.4 充型、凝固过程模拟

3.4.2 充型过程速度模拟

3.4.3 凝固过程温度场模拟

3.5 模拟后修正工艺参数

3.5.1 浇注系统修正

3.5.3 浇注工艺参数对比

4 结论

离合器壳体采用树脂砂造型,低压浇注工艺成型,辅之以铸造CAE手段进行工艺设计、工艺参数指导及缺陷预测,能够快速生产出表面光洁,内部无缺陷的高质量铸件,铸件的力学性能满足设计要求而且成本低廉。这种工艺方法对其他薄壁铸件的快速试制具有极大指导意义和推广价值。

参考文献:

[1] 邱孟书,王小平,等.低压铸造实用技术[M]. 北京:机械工业出版社,2011.

[2] 铸造手册 第三版编委. 特种铸造分册[M]. 北京:机械工业出版社,2011.

[3] 田荣璋. 铸造铝合金[M]. 湖南:中南大学出版社,2006.

[4] 约翰·坎贝尔. 铸造原理[M]. 北京:科学出版社,2011.

[5] 胡忠,张启勋,高以熹,等. 铝镁合金铸造工艺及质量控制[M]. 北京:航空工业出版社,1990.

[6] 罗庚生,张志忠,吕有纲等. 低压铸造[M]. 北京:国防工业出版社.1989.

[7] 铸造手册 第三版编委. 造型材料分册[M]. 北京:机械工业出版,2011.