首页 > 范文大全 > 正文

换乘车站公共区通风空调划分方案

开篇:润墨网以专业的文秘视角,为您筛选了一篇换乘车站公共区通风空调划分方案范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘 要:基于换乘地铁车站土建同期施工,机电不同时施工的情况。为减小远景线机电安装时对已运营线路的影响,采用理论分析的方法,对换乘车站公共通风空调系统划分方案进行分析;并利用对比分析的方法将不同方案的优、缺点进行对比,最终结合实际工程情况选择最优方案。结果表明,利用理论分析和对比分析的方法,可以确定合理的通风方案,在工程上达到节能、降低成本和方便施工等目的。

关键词:换乘车站 公共区 通风空调

中图分类号:U231+5 文献标识码:A 文章编号:1674-098X(2016)02(b)-0049-02

地铁是一种快速大运量城市轨道交通模式,目前我国已有20多个城市拥有地铁[1],换乘车站为地铁线路之间连接的枢纽,相比于普通地铁车站,换乘车站的客流量表现为高集中性[2]。厦门市轨道交通五缘湾站为2号线与3号线换乘车站,站厅层公共区呈T形换乘,站台层通过换乘通道实现换乘。结合实际工程进度,2号线优先于3号线开通,故此通风方案应保证3号线进行机电安装时尽量减小对已运营的2号线的影响。

1 常规设计标准

1.1 防排烟设计标准

地下车站站厅、站台划分防烟分区的建筑面积不超过2 000 m2,且防烟分区不得跨越防火分区[3]。

1.2 标准车站公共去通风空调常规方案

车站站厅和站台通风空调系统采用全空气系统[2],其主要功能为排除公共区的余热和余湿,保证公共区达到设计的温湿度和空气质量标准,并兼公共区发生火灾时的排烟系统。空调机房一般放在车站站厅层的两端,各负责半个车站的通风空调。每端的空调机房设置一台空调机组,对应一台回排风机和排烟风机。气流形式为站厅公共区两送两排,站台公共区一送一排,气流组织均为上送上排。空调机组和回排风机可考虑采取变频措施[4]。

1.3 换乘车站公共区通风空调常规方案

换乘车站设备布置情况与标准站相同,换乘的两条线分开控制,独立运营。以厦门市轨道交通2号线五缘湾站为例。将站厅层公共区划分为4个区域,区域①、③为2号线服务范围,区域②、④为3号线服务范围。在2、3号线站厅层两端通风空调机房内各设置一台空调机组、回排风机和排烟风机,分别负责临近区域的通风空调和排烟,如图1所示。

站台层每条线由两端空调机组和回排风机共同服务;站台层起火时两端排烟风机同时启动,并启动相应隧道风机和轨道排风机辅助排烟[5]。

2 公共区方案确定

2.1 初步确定车站方案

结合实际工程情况当3号线进行机电安装时,2号线已经开始营运,初步调整方案(方案一)为:将区域2中的部分划入2号线服务范围,如图2所示。

由于执行此种方案时,3号线公共区运营。故当3号线运营时,交叉区域应由3号线服务,服务区域按图1所示执行。2号线风管末端通过前期预留手动风阀,后期关掉来实现控制。且远期实施时需将原来挡烟垂壁[6]拆除,并重新安装在新的位置。

2.2 优化方案的确定

因对方案一进行总结分析后,发现存在几点不利因素。

(1)交叉区域需穿过两层风管,对车站高度要求较高,提高土建造价。

(2)2号线风管末端通过风阀关闭存在漏风现象,造成冷源浪费。

(3)挡烟垂壁的拆除和重新安装影响2号线运营,且对装修造成破坏。

基于以上因素,考虑将交叉区域永久划入2号线服务范围,提出方案二,如图3所示。

如图3,区域①、②由2号线车站两端通风空调机房内的设备服务;区域③由3号线左端通风空调内的设备服务;站台层由两端通风空调机房内的设备共同服务。

3 方案比较

与方案一相比,方案二存在以下优点。

(1)公共区不存在风管交叉及服务重叠现象,节省管材,且对车站高度要求小,节省土建造价。

(2)风管末端无需利用风阀截断气流,无漏风和冷原浪费现象。

(3)无需对挡烟垂壁等进行二次安装,保护装修,且对已运营线路无影响。

(4)方案一设备需要按近期/远期控制,设备选型需满足近期运营温湿度要求,装机容量大,方案二不存在此现象,节约装机容量[7]。

(5)方案二设备装机容量小,节省电缆和电控柜等成本。

4 结语

(1)通过对方案一和方案二的具体分析及两种方案的对比,方案二无论在降低成本和方便施工等方面好于方案一,故将方案二作为优化方案。

(2)建议此类工程在选定方案时应紧密结合实际情况。

参考文献

[1]秦宏霄.浅谈我国城市地铁建设的现状和发展战略[J].城市地理,2014(14):14.

[2]王波,李晓霞,安栓庄.轨道交通换乘站客流特性分析及车站设计[J].都市快轨交通,2010(2):55-58.

[3]GB 50157-2013,地铁设计规范[S].2013.

[4]刘俊.公共建筑节能分析与评价研究[J].山西建筑,2014(30):184-186.

[5]郝鑫鹏.地铁站台火灾烟气流动与机械排烟模式[D].西安建筑科技大学,2012.

[6]樊洪明,尹志芳,张丹,等.地铁车站挡烟垂壁对火灾烟气流动的影响分析[J].防灾减灾工程学报,2011(1):80-84.

[7]朱立泉,吕景惠.建筑设备节能控制与管理系统在工程中的应用[J].智能建筑电气技术,2011(1):41-46.