首页 > 文章中心 > 数字医学

数字医学范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

数字化学习与医院继续医学教育

文章编号:1009-5519(2008)10-1562-02 中图分类号:R19 文献标识码:B

继续医学教育作为终生性的医学教育方式,贯穿于卫生技术人员的整个职业生涯的过程中。由于医学进步日新月异,而医务人员工作繁忙,传统的学习方式已经不能满足他们对于知识更新的需求。随着信息技术的发展,数字化学习已经成为医务人员进行继续教育的主要模式。因此大力整合知识信息资源,建设医院的数字化学习平台,促进学习型医院的形成,是医院可持续发展的坚实基础。

1 数字化学习的涵义及特点

1.1 学习不受时空限制:数字化学习资源的高度共享性及通讯技术的发展突破了学习的空间和时间的限制,学习者可以不受时间和空间的限制,根据自身的条件来选择学习的时间和地点,能较好地解决工作与学习的矛盾。而且数字化学习使学习内容的时效性更强,比如出现像SARS、禽流感等新的流行病期间,卫生行政部门在其网站上相关的学习资料,各地医务人员借助网络可以即时知道专家制定的诊疗指南。

1.2 学习自主性增强:数字化学习资源具有高度的多样性和共享性,医务人员可以根据自己的学习时间、专业需要、学习能力和兴趣选择适合自己的数字化学习资源和学习方式进行学习。如好医生网站上就开设有继续医学教育的平台,医务人员可以在这个平台上自主地选择学习课程[2]。

1.3 学习形式多样化:通过运用现代信息技术提供丰富多彩的互动和协作环境,学习者可以利用网络教学系统、虚拟教室、虚拟实验室、聊天室、电子邮件、公告板和网络传呼机等工具,选择独立学习、团队协作学习、分组讨论学习、远程互动学习等多种学习形式。比如网上“虚拟患者”为学习者提供医学病例情境,指导学习者对情境进行观察、思考、操作。在网络环境下,有着相同学习兴趣的医务人员可以组织合作学习小组,在相关网站的交流平台上学习、讨论、交流。

1.4 降低了继续医学教育的成本:数字化学习环境下,医务人员不用离院就可以参加学习,节省了学习成本。通过开展数字化学习,在医院里面就可以普及继续医学教育,也减轻了医院的负担。

1.5 缩小了地区之间的继续医学教育质量的差异:一些边远地区相对经济发达地区的继续医学教育水平有一定的差距,通过数字化学习,在边远地区的医务人员也可以有机会接受著名专家、教授的授课。

全文阅读

从数字医学实践谈医学概念

另一个现实问题也摆在我们临床医生面前:数字医学,我懂吗?我能做什么?普通临床医生应该如何认识自己在数字医学中的角色?实际上,已有不少临床医生敏锐地认识到数字医学实践对推进临床学科发展的重要意义,及早进行了数字医学的临床实践摸索,并取得了优异成绩。例如:浙江医科大学第一附属医院将3D技术应用于活体肝移植实践,有力地支撑了精准手术决策[1-2];广州总医院骨科积极开展了数字骨科的创新性研究,将数字化重建与快速成型技术应用于复杂上颈椎疾患等骨科疾病的诊治,取得了良好的疗效[3-4];新疆医科大学第一附属医院将数字技术应用于对巨大肝泡型肝包虫病的诊断治疗[5],中国人民总医院、福建医科大学第一附属医院、中山大学第一附属医院等单位开展了基于肝脏三维图像的肝段自动划分及虚拟性肝切除临床实践,提高了肝脏外科的精准技术水平等[6-9]。其中有一个团队的发展轨迹十分值得我们关注,即南方医科大学附属珠江医院肝胆一科团队。2002年该团队开始进行数字医学在肝胆胰外科的应用研究。他们在研究工作中克服了常用的国外Myrian等软件只能进行肝脏3D和单面虚拟手术、CT的3D功能也存在重建质量和交互性差异的弱点,在数字虚拟人肝胆胰图像3D和仿真手术基础上,率先通过对64排CT采集数据技术的改进,突破了获取活人体亚毫米图像数据的瓶颈,研发出了具有我国独立自主知识产权、能同步立体显示肝胆胰脏器的MI-3DVS软件,实现了解剖数字化和诊断程序化;同时,在国际上率先自主研发了由外科医生操作的多功能仿真手术器械和仿真手术系统,可有力地配合MI-3DVS进行仿真手术,指导临床术前制定精准手术方案,实现了手术可视化,解决了大量的临床疑难问题,建立了我国首套数字医学肝胆胰外科数据库[10-15]。黄志强院士指出:南方医科大学研发出来的三维成像技术,作为我们国家代表性的三维数字医学技术,应用于外科方面。对于临床上了解肿瘤与门静脉、肝静脉和肝动脉的关系,作为术前评估,比以前更容易了,誉其为转化医学的良好典范[16]。

总结在数字医学实践中获得优异成绩者的成功经验,有以下几个关键性成功元素:(1)创新的攻关理念,即数字医学技术如何直接转化为临床病人实施精准治疗、获得最佳效果服务。(2)明确的攻关目标,如南方医科大学附属珠江医院肝胆一科团队的主要目标是建立可为外科医生直接操纵的、用于指导精准手术的腹部医学三维可视化系统——MI-3DVS—虚拟手术系统,及其要完成这个总目标必须实现的子课题(特殊组织、微小器官信息获取、图像分割、三维重建,手术导航等)。(3)多元的攻关团队,其中包括临床外科医生、解剖学专家、影像学专家、计算机专家、软件制作专家等。(4)坚韧的攻关精神,在临床科研的实施中边学习、边实践、边研究、边验证、边总结、边思考,不断升华,不断赋予新的研究目标和内涵,使课题不断向纵深延伸、向高层发展,始终充满活力。(5)最重要的,他们有一个精诚团结的攻关领导核心。转化医学有三层内涵。第一阶段即T1阶段,是根据临床需求,进行创新性研究,力求实验室和临床研究的成果能用于提高疾病防治效果。个人理解,简言之,就是结合临床“找问题,做研究”。从数字医学角度来说,就是要根据临床的需求,进行数字医学基础研究,获得关于数字人体的新认识,开发出新的临床精准诊断疾病、虚拟手术的应用技术手段以及管理手段,用于临床诊断、治疗和预防等,提高诊治水平和效果。这个阶段,涉及到人体解剖、外科学、病理生理、影像学、计算机三维成像、信息化网络平台的构建等多个学科的联合攻关。中国工程院程京院士最近在中国医师协会外科医师分会第五届学术年会的报告中谈到,我国转化医学路径的特点是“CURING”模式,C:Clinic,临床,从临床发现问题;UR:UniversityResearch,大学研究,将临床发现的问题在大学进行相应的研究;IN:Industry,工业,通过工业化将研究成果制备成产品;最后,还有G:Government,即政府的支持。数字医学的T1阶段正是CURING模式的生动体现。首先,要寻找到与数字医学相关的临床问题,如肝胆管结石病容易复发,术后残石率高达61.3%,再手术率高达56.4%,即使有纤维胆道镜的普遍使用,残石率仍可达19.5%[17]。因而复杂性、多发性肝胆管狭窄并结石病人常需多次、反复手术,给病人带来极大的痛苦。究其原因,主要是肝内胆管的走行多变,狭窄位置不定,术前难以确切显示定位,确定诊治策略存在一定的难度。B超、CT、内镜逆行胰胆管造影(ERCP)、磁共振胰胆管成像(MRCP)等现代化检查手段都不能达到理想的诊断。南方医科大学附属珠江医院肝胆一科团队抓住这个临床问题,将其凝练成“如何获取亚毫米微细脏器、管道数据”这一科学问题,与数字人体解剖专家、影像专家、计算机专家联合攻关,最终突破了高质量胆道数据采集的瓶颈,获得了高清度结石、扩张或狭窄胆管的图像数据,使病变繁杂、难以确定根治性治疗方案的肝胆管结石手术变为病灶明确、手术方式精确。在此基础上经过与软件生产公司的联合,使研究结果变为可用于外科医生在临床独立电子计算机上操作的软件系统,术前进行虚拟手术,拟定精准治疗方案,使Ⅰ、Ⅱa、Ⅱb肝胆管结石病的术后残石率降低至1.0%[18],治疗效果大大提高。目前该软件系统正在接受政府(国家食品药品监督管理局)的审查,争取在国家法律法规的批准、监督下正式上市,在临床广泛推广应用。由此可见,数字医学的T1阶段,要从临床出发考虑问题,研发出直接为临床所用的数字医学设备、软件产品,具有重要的“原始创新”意义。临床是T1阶段的首要启动环节,如果没有临床问题的发现、挖掘,就谈不上此后的一系列转化研究的进程。既往许多基础研究费精劳神完成后却被束之高阁,其主要原因常常是在T1阶段没有选准能解决临床需求的问题所致。临床医生在T1阶段所担负的角色应该是临床问题的发现者、科学问题的凝练者、临床科研的实践者、研究结果的验证者。临床医生的任务是如何深入细致地发现临床中的疑难问题,将其提升、凝练成如何进行科研攻关的科学问题,并参与进行攻关研究,验证研究结果,促进临床诊疗技术的进一步发展。转化医学的第二阶段,即T2阶段,是将研究成果用于日常临床工作及制定预防保健决策。这是使T1阶段研发的成果真正转化成为促进人类健康的有效措施的实践过程。从数字医学实践来看,应是充分应用各种数字技术产品所体现出的数字技术的精准性、快捷性、信息共享的广泛性等,对临床疑难问题进行精确的分析评估,对比分析研究,发现特异性数字征象,总结规律性经验,用于指导和拟定精准的手术或综合治疗方案,并验证其临床效果,挖掘新的问题,进一步转化,进入新一轮T1进行深入研究和改进。

简言之,就是将T1阶段研发出的数字医学技术成果进一步“推广应用,验证提高”。因此,该阶段是消化吸收再创新的重要阶段,内涵更加丰富,范围更加广泛,需要投入更多的人力、物力、精力、财力。也只有通过这一阶段,在T1产生出的数字医学原始创新成果才能得到真正意义上的印证和认可,为临床所接受,为病人服务,创造出巨大的社会效益和经济效益,实现转化医学的真正目的。在此阶段,由于临床医生最接近临床实际,最有利于及时观察、研究、探索、发现T1结果的时效性、准确性,因而应该可以发挥出创新性研究的更大潜能,更多的主观能动性。临床医生在数字医学T2阶段担负的角色应该是T1阶段研究成果的临床实施者、推广应用者、对比研究者、归纳总结者。在这方面,已经有大量的研究报告得以证实,诸如我们在前面所提到的多个优秀团队的杰出工作。转化医学的第三阶段即T3阶段,是将实验与临床研究作为制定卫生法规的依据。T3是更高层次的转化,具有更重要的指导全局的意义。从数字医学实践探讨其含义,我理解就是要充分运用信息传递的快捷性、信息共享的便捷性等数字技术的优势,准确快速地汇集和分析各种资料,进行队列研究及RCT研究,为各项疾病的规范性诊治“指南”、“共识”的制定、医疗机构等级评定、医保的范畴决策等提供依据,以及通过高层次的行政管理、学术规范管理举措,进一步规范医疗行为,增强医务人员素质,提高临床诊治水平。简言之,“拟定规矩,规范行为”。临床医生在此阶段担负着更为重要的角色和任务,他们应该是数据采集者、资料分析者、标准制定者、依据提供者。例如,最近中华医学会外科学分会胆道外科学组应用现代数字医学影像学技术,包括3D成像分析技术,结合解剖学、手术学、病理学依据,制定了胆道疾病规范性诊断治疗文件,用以指导胆道外科临床,使数字医学技术成为开展规范性精准肝胆外科的有力支撑。综上所述,数字医学绝不仅仅是影像学专家、计算机专家、医学管理专家的事情,在数字医学T1、T2、T3相互转化的进程中,临床医生承担着重要的角色,是不可低估的中坚力量。同时,通过数字医学实践,使临床医生对病情的分析、治疗的决策由过去的经验决断转化为今天由信息技术支撑的精准决断,有助于提高分析、决策的精准性,从而使病人获得最佳的治疗效果。这不仅造福于广大病人,而且有助于提高临床医生自身素质,促进学术发展,规范医疗行为,更好地为病人服务。临床医生在数字医学中如何胜任自己的角色?(1)具备多种知识,不断学习提高。临床医生要实现数字医学的转化医学理念,产生创新性研究成果,不仅需要掌握外科学、手术学、解剖学知识,而且要具备计算机学、信息学、影像学等多方面的知识,只有加强学习,不断进取,才有可能适应“知识爆炸”时代数字医学与临床医学相互交融、日益迅速的技术发展。(2)认真思考问题,凝练攻关靶标。创新性成果来源于创新性思维,而创新性思维来源于在看似平凡的临床现状中勤于发现现存问题,善于凝练科学问题。如果每天满足于完成日常工作,熟视无睹,得过且过,是不可能有所发现、有所发明、有所创造、有所前进的。(3)组织交叉团队,团结合作协调。一个人的技术水平再高,所具有的知识毕竟是有限的。临床医生充分认识自己在数字医学T1、T2、T3的角色,是为了更好地发挥主观能动性,主动进行基础研究与临床需求之间的相互转化,使病人直接受益,但应认识到数字医学是个多种知识交叉融合的前沿学科,单凭临床医生是难以完成复杂的整体研究工作的,应注重与其他学科专家的紧密联手,虚心向他们学习,尊重他们的创新思维,协调合作,共同努力,方能完成转化医学大业。(4)注重创新发展,勿忘主题目标。转化医学之所以被高度重视,是因为既往诸多耗费大量资金的基础研究难以付诸于促进临床医学发展、使病人受益的现实,因此,在进行数字医学创新发展的探索时,应时刻勿忘转化医学的根本宗旨,注重从临床找问题,为促进又快又好地精准诊断治疗、切实提高人民健康水平而解决问题,防止重蹈覆辙。

作者:卢绮萍

全文阅读

谈医学领域的数字出版

毫无疑问,随着信息时代、数字时代的到来,网络媒体的发展壮大、电子产品的推陈出新,传统的纸质出版也必将受到数字出版的强烈冲击。人们更喜欢在电脑前工作、学习,足不出户,就可以查找到自己需要的信息,购买到所需要的图书内容或者浏览在线资源、阅读电子图书。事实也证明,2009年,全球最大的网上图书零售商亚马逊电子书的销量首次超越了纸质图书的销量;同年,我国数字出版总产出799.4亿元,总体经济规模超过图书出版。

关于数字出版,目前似乎还没有权威、准确、公认的定义。大概有以下几种说法:1,数字出版,是出版资源全生命周期信息交换的过程;是利用网络进行在线或者离线数字写作内容的采集和管理的过程;是把内容中的各种知识析离共享管理的过程;是根据使用者的需要进行全媒体组织输出的过程;是在线信息网络化服务的过程。2,数字出版,是依托于信息技术、数字技术和计算机网络技术而诞生的新的出版形态。3,数字出版,就是将概念、思想、知识借由字符、图像、影像、语音方式整合成0、1的数字内容,经加值后传播于公众。2007年在维也纳举行的第17届国际数字出版会议上是这样定义数字出版的,数字出版是依靠互联网并以之为传播渠道的出版形式。

虽然概念是模糊的,但这不影响人们对数字出版的热情。随着Kindle、iPad、汉王等电子阅读终端的热销,带动了电子书的热销,人们普遍接受了这一新颖的阅读模式,并对之狂热地追捧。当然,电子书只能说是数字出版的一部分,绝非全部。此外,网络游戏、数字期刊、手机报等早已为人们熟悉,并引领着数字出版的潮流。数字出版正在不断被人们丰富其内容,不断延伸着其定义。我们也不必纠结于数字出版是传统出版的延续,还是传统出版的替代,抑或其他。总之,数字出版时代即将全面到来。

国外医学领域数字出版现状

爱思唯尔(Elsevier)

爱思唯尔是一家经营科学、技术和医学信息产品及出版服务的世界一流出版集团。通过与全球的科技与医学机构的合作,每年出版1800多种期刊和2200种新书,以及一系列创新性的电子产品,如Science Direct、MD Consult、Scopus,文摘型数据库、在线参考书目和特定学科入口网站。在数字出版方面,目前爱思唯尔已与中国部分高校建立了合作关系,例如分别与上海交通大学及清华大学图书馆合作建立Science Direct中国镜像站点,提供电子期刊和电子图书的分类浏览、检索和全文阅读功能,其中对于电子图书提供按章节检索和阅读功能,检索和利用极为方便。

麦格劳-希尔(Me Graw Hill)

麦格劳-希尔专业出版包括五大块的内容:商业、医学、技术、教育和大众出版。该社每年出版大约900种图书,他们通过四种方法提高产品的数字化程度。麦格劳-希尔开发得很好的一个产品叫Access Surgery(走进外科手术,用于帮助医学院学生在线观摩最新的手术方式),它应用了搜索、互动、实时更新、内在存储这四种方法,是一种只能通过注册后才能在线使用的产品。在Access Surgery平台中,麦格劳-希尔放上了所有的图书内容和视频等,作者还会经常更新其内容。目前该社已经建成外科、内科、工程、科学等各种数据库类别,投资相当大。麦格劳-希尔对现在经营的六块业务中的三块,即搜索、电子图书和数字授权,有一个界定:搜索是让读者在网上可以找到10%的图书内容,电子图书和数字音像图书内容则是由他们进行数字化转换后提供给发行商拿去销售,数字授权是向需要在线使用该社图书的人收费。对于搜索部分,他们有三家合作伙伴,即谷歌、微软和亚马逊,这一块收入比较少,此举的目的是希望通过这些网站的参与来提高麦格劳一希尔网站的浏览量,这一方面可以提高纸质图书的销售,另一方面可以吸引更多的读者去访问麦格劳-希尔网站。

全文阅读

从“虚拟人”到“数字医学”

中华医学会数字医学分会于2011年5月21日成立,标志着在钟世镇院士倡导下,以解剖学为基础的“虚拟人”发展到“数字医学”,成为生命科学、工程学与计算机科学交叉的新兴学科。

2011年5月21日,中华医学会数字医学分会在第三军医大学举办隆重的成立大会。该学会的成立,标志着在钟世镇院士倡导下,以解剖学为基础的“虚拟人”发展到“数字医学”,数字医学成为生命科学、工程学与计算机科学交叉的新兴学科。

中华医学会、重庆市政府、总后卫生部、第三军医大学等单位的领导,以及来自全国医疗行业的专家教授200余人出会。大会选举张绍祥教授为中华医学会数字医学分会第一届委员会主任委员。

张绍祥教授认为:数字医学是指现代医学和数字技术相结合,包括医学、计算机科学、数学、电子学、机械工程等多学科的一门新兴的交叉学科。数字医学具有强大的生命力,它不仅突破了传统的学科架构,而且渗透到医学的各个方面,带来医学的革命性变化,现已成为当今世界最为活跃的前沿学科之一。数字医学涉及许多方面,目前在外科手术导航、影像立体重建、人体器官个性化制造等方面有所建树和突破,为临床医学带来全新的手段。

在医学界,钟世镇院士被誉为中国现代临床解剖学的奠基人、中国数字人和数字医学研究的倡导者。2001年,钟世镇院士在第174次“香山科学会议”上首次研讨了“中国数字化虚拟人体的科技问题”。中国人体数据库初步建成后,钟世镇院士开始担任“中国数字人研究联络组组长”。

钟院士介绍,数字医学由“虚拟人”发展而来,而“虚拟人”研究分为四个发展阶段:第一阶段是数字可视人;第二阶段是数字物理人,拥有人体的物理性能,可以模拟肌肉的运动;第三阶段是数字生理人,可模拟人的生理功能,到达第四个阶段的数字智能人则将具备一定的思维能力。

目前,中国对“虚拟人”的研究已经达到第三个阶段――数字生理人。数字人课题组已构建了八套男女全身数据集,数十套人体器官数据集,以及数十套用于了解人体结构的数字化解剖软件。

“虚拟人”技术一经推出便吸引了各个领域的目光。除医学领域,在汽车碰撞实验、航天技术、服装设计业、影视等方面,“虚拟人”技术也充分得到运用。在“神六”返回舱设计和着陆过程中,“虚拟人”数据集同样功不可没。

全文阅读

数字医学影像及DICOM标准

1DICOM标准

DICOM(digitalimagingandcommu-nicationinmedicine)标准即医学数字成像和通信标准,由美国放射学会(ACR)和国际电子制造商协会(NEMA)共同制定。DICOM标准致力于更有效地在医疗信息系统间(如PACS、HIS/RIS)、医学影像设备间(如CT、MR、CR)传输、共享数字影像[2]。DICOM标准的建立极大地推动了不同厂商的医疗数字影像信息的传输与交换,促进了影像存储与传输系统PACS(picturearchivingandcommunicationsys-tems)的发展与各种医院信息系统(hos-pitalinformationsystems,HIS)的结合,实现了异地、异构诊断资料库的共享。迄今为止,DICOM共颁布了三个主要版本。CR/NEMAPSNo.300-1985,Version1.0,发表于1985年,1986年10月正式成为标准;CR/NEMAPSNo.300-1988,Version2.0,1988年1月颁布为标准;DICOMVersion3.0,源自ACR-NE-MA两次发表的标准,1993年。每年,ACR-NEMA都推出DICOM3.0的修定草案,目前最新的版本是DICOM3.02000年最终草案标准(FDS)[1]。相对于以前的版本,DICOM3.02000明确地划分了设备应遵从的标准范围,更加明确了信息实体,强调了基于多元文档的结构、基于TCP/IP的协议和适用于网络的环境。随着DICOM标准的不断完善,世界医学影像设备的主要供应商都宣布支持DICOM标准。DICOM标准已成为北美、欧洲及日本各国在医疗信息影像系统中的标准。我国的医疗信息综合系统和PACS的建设虽然刚刚起步,但发展很快。在系统的建设和实施中为了确保它们能够实现开放互联并具备与国际接轨的能力,DICOM成为必须遵循的国际标准,因此对DICOM标准的分析和研究必不可少。作为国际标准,DICOM具有覆盖面广,内容复杂的特点。本文旨在分析它的总体框架和关键内容,力图从这个庞大的标准中理出一条明确的脉路,对实际应用起到指导作用。

2DICOM的主要内容和信息模型

2.1DICOM标准的组成、功能及其相互

关系完整的DICOM3.02000标准由15个部分构成[1],各部分是相互关联的独立文件。虽然某些部分的内容在不断补充和完善,但总体框架已经最终确定:(1)介绍与总论:全面介绍DICOM的历史、目的、结构和适用范围,并对其他部分的内容做了简介。(2)兼容性(或称遵从性):详细说明DICOM的兼容性目的和架构,同时给出了在开放互联方面对遵守该协议的设备的具体要求。(3)信息实体定义:针对用于数字化交流的实际医学影像给出一个抽象的定义,同时定义了可以使用DICOM进行通信的类别。(4)服务类的说明:对一系列的服务类进行了定义,给出用于数字化交流的操作行为的抽象定义,即定义使用DI-COM进行通信的服务的类别。(5)数据结构和语义:对数据结构及数据的编码进行说明。(6)数据字典:包括对所有DICOM数据以及所有在DICOM标准内部定义的数据的注册和认可信息。(7)信息交换:本部分定义了DI-COM命令的结构(命令结合相关数据即组成DICOM消息),同时也定义了DI-COM应用实体间的协议握手方式。(8)网络通信支持下的数据交换:这一部分说明了在网络中,DICOM如何使用TCP/IP和OSI网络传输协议。(9)点对点传输下的信息交换:说明在点对点传输下支持应用DICOM协议进行数据交换的服务器和网络上层协议。说明DICOM如何支持50针点对点消息通信的服务和协议。(10)介质储存和存储介质间交换的文件格式:它提供了一个用于不同类型医学影像间数据交换及不同物理介质相关信息交换的框架。(11)介质存储的应用方式:说明将医学影像信息存储于可移动介质的的模式。(12)介质格式和用于内部交换的物理介质:描述了如何便利医疗环境中数字影像计算机间的内部信息交换。这样的交换可应用于医学图像诊断或其他潜在的临床领域。(13)点对点传输下的打印管理:详细说明打印提供者在点对点联接的情况下支持DICOM打印管理所必须的服务和协议。(14)显示的灰度标准:详细说明灰度图像的标准显示功能,它提供了一些样例方法,说明如何调整灰度图像与显示系统。(15)安全策略方法:说明了具体应用所应遵循安全策略的兼容方式。DICOM的15个部分之间既相互独立,又互相联系,从涉及的主要内容和关联程度出发可分为3个集合[4]。数据传输协议集包括第7、8、9部分及第13部分,描述了点对点连接与网络环境下的数据传输协议,定义了网络环境下的打印管理应用。数据格式(编码、储存)集包括第5、6部分及第10、11、12部分,描述了不同条件下数据存储的标准格式。标准框架及其他包括第1、2、3、4部分、第14部分及第15部分,描述整个DI-COM标准的结构、目的和要求及图像灰度标准,并定义了安全策略。

2.2DICOM的一些重要概念

DICOM标准中定义了一些重要的概念,有关模型和协议也是以这些概念为基础来设计和制定的。(1)应用实体:应用实体是指一个具体的DICOM应用程序。(2)服务类:服务类是对现实中医学信息的传递和通信的抽象概括,它包括作用于信息对象的命令及结果。DICOM服务类提供客户/服务角色,通过网络要求DICOM服务的应用实体称为服务类使用者(SCU)。提供DICOM服务的应用实体称为服务类提供者(SCP)。(3)信息模型(informationmodel):信息模型描述了实体之间的关系。通常,用“E-R”模型定义一对多或多对多的关系。(4)消息服务元素(DICOMmessageserviceelements,DIMSE):DICOM标准定义了一系列系统网络命令。SCU/SCP利用消息服务元素在网络上进行服务,消息服务元素可以被认为是网络通信的最基本单位。(5)协议握手:应用实体间必须达成一个协议,才能相互通信。这个协议包括:①哪些服务可以操作,命令和数据如何相互交流;②传输规则,消息流(包括命令和信息对象)如何在通信过程中进行编码。

2.3DICOM的信息模型

全文阅读

数字化教学在医学影像教学中的应用

摘要:随着数字影像技术、计算机技术和网络技术的迅猛发展,全国的各大医院已经逐步开展和实施数字化管理。医学影像技术逐渐发展为数字影像技术,进入无胶片化时代,医学影像学传统教育模式已不适应当前教学发展要求。本文对数字化教学进行初步探讨,以期发现数字化教学在医学影像教学中的实际应用价值。

关键词:医学影像 数字化 教学 应用

医学影像学在现代医学技术发展的影响下,成为现代医学领域发展最快、涉及范围最广的学科之一。医学影像教学的最大特点就是需要教授学生大量影像图片资料。而传统的胶片式教学主要依赖于传统胶片,信息量少,只能提供静态的信息,费时费力且图像质量参差不齐,已逐渐地被时代的发展所淘汰。数字化教学解决了这一问题,它可以全数字化的采集、传输、重现医学影像资料,极大地方便了医学影像教学。

一、医学影像学

医学影像学是现代医学的重要组成部分,内容包括X线、CT、MRI、介入放射学、超声及核医学等,是一门实践性很强的形象思维学科,其特点是有大量的图像数据,通过对影像资料的分析、对比,结合其他临床知识进行疾病的诊断、治疗和疗效的观察。鉴于这一特点,临床教学中也以指导学生积累丰富的图片及图像资料为主,包括正常及疾病状态的图片,从而熟悉各种器官的不同成像技术所得的图像的正常与异常表现。

二、传统医学影像学教学

现代医学影像学与以往相比,学生不仅要掌握丰富的影像学知识和扎实的医学基础知识,包括解剖、病理、生理、生化等,还要适应现代医学发展的需要掌握分子生物学,大量的内、外、妇、儿等临床相关学科知识与技能,具备物理、数学及计算机知识。医学影像学涉及的内容如此之多,课时却相对较少。传统教学模式下教师总是先带领学生复习理论知识,再让学生结合理论阅片观摩,在有限的时间内对医学影像图像只能简单地描述、讲解,然后指导学生自己观察、体会、分析,是一种填鸭式的教学模式,学生的学习效果自然不好。另外,大量胶片的反复使用会造成胶片模糊、损坏、丢失、错放等现象,同时由于观片灯视野所限,胶片质量、阅片距离、个人视力差异等因素,也影响了学生的学习效果。

三、数字化医学影像学教学

全文阅读

医学影像学中图像数字化的运用

摘要:

计算机技术在优化的过程中逐渐渗透到了各行各业,促进了不同行业的迅速发展。在现代医学影像学技术运用中,通过计算机图像数字化的运用,可以促进医学行业技术的全面提升,实现医学领域事业的创新性发展,从而为医学影像学计算机图像数字化的运用提供稳定性的技术支持。

关键词:

计算机图像数字化;医学影像学;技术运用

伴随计算机技术的创新,信息技术以及分子生物学技术呈现出高速发展的运行理念,并在计算机辅助放射成像技术运用的基础上,实现生物学技术的全面发展。通过对计算机辅助放射技术的研究,可以实现分子生物学以及现代生物学中影像学产业的稳定结合,构建经典医学影像技术,并在临床诊断及技术运用的基础上,进行试验的有效探究。而且,在当前社会科学技术不断提升的背景下,计算机图像数字化与医学影像学之间呈现出稳定性的发展变化。通过图像的数字化处理,可以实现计算机信息资源的储存,处境格式的优化及参考资料的提升,从而为计算机图像与医学影像的运用提供稳定支持,实现医学影像学的全面发展。

1计算机图像数字化与医学影像的关系分析

对于计算机图像数字化处理技术而言,是在计算机图像处理结束之后进行的数字化处理,在这种数字化资源运用的过程中,可以将计算机的数据资源进行储存及后期处理。通常情况下,在图像数字化资源过程分析的过程中,基本的过程会分为采样及量化两个最基本的步骤,其中采样的是指就是需要通过多个点的描述进行图像的绘制,而采样的结果也就是通常所说的图像分辨率。而量化主要是在图像采样之后,通过不同点的使用,可以运用大范围的数据值进行内容的表示,该范围包含了颜色总数、量化结果以及图像,通过对这些元素的有效运用可以实现系统颜色的容纳等。对于最初的影像资料而言,其获取患者的资料都是模拟信号图像,并将x线系统作为基础,患者的影像资料以及模拟信号中的表现形式会在胶片中进行展示,但是,在这种图片图像调节的过程中,应该对影像图像进行模拟分析,对于图像中不可调节的资料进行后续处理,由于与计算机软件系统中的储存空间相对较大,患者影像资料在长期储存的过程中存在难度较大的问题,这些问题的出现都会在某种程度上对影像资料的储存造成制约。

2计算机图像数字化在医学影像运用中的问题分析

全文阅读

医院数字化对医学信息管理人才的影响及对策

随着新医改政策的不断改革与深入,医院数字化也应运而生。医院数字化能降低信息管理成本和提高医院的管理质量,实现医院资源最优配置而提供全方位的服务,但也对医学信息管理人才提出新的要求与挑战。本文就医院数字化对医学信息管理人才的影响与对策进行了研究分析。

医院数字化是医疗卫生信息化的重要组成部分,以医院数字化管理和电子病历为重点推进医院数字化建设。而医学信息管理人才是其主体。决定着医学信息服务水平和传递医疗共享资源的质量与安全。为此,医院信息管理人才的培训与引进应成为医院未来发展的重要议题之一。

当前医院数字化的建设与发展现状

医院数字化能在网上预约就诊、影像数据、财务管理、电子病历、医疗数据资源共享等方面实现网络化、智能化和数字化的全方位服务。当前部分医院领导重医疗轻管理、发展意识不强、尤其是医学信息管理人才紧缺等因素制约着医院的数字化建设,为此当前大多数医院,尤其是基层医院的信息数字化建设属于起步阶段。

医院的竞争实际是信息与资源的竞争,而信息与资源的竞争本质上是人才的竞争。医学信息人才对信息化管理和多学科合作等方面起举足轻重的作用,能提高医院的竞争力与服务水平。医院迫切需要引进与培养更多的医学信息管理人才。只有这样才能逐步提升就医速度与服务质量。最终营造一种和谐的医患关系。

医院数字化对医学信息管理人才的机遇与挑战

院信息管理人才对医院数字化建设发展的积极影响。传统的医院对患者的信息主要是人工进行的纸质储存。对其信息管理需要投入大量的财力物力。工作效率低而且成本高等。但随着信息化的运用与普及,使得医院的信息管理成本降低,管理效率高。另一方面。医院数字化使得医院信息管理在时间、空间等迅速发展,最终成为了网络桌面管理,实时动态管理医院信息。更为重要的是,能协助其他科室查询病人资源,便于诊断与治疗,形成共赢。

医院数字化给予医院信息管理人才机遇。随着医疗卫生事业信息化的迅速发展和全面普及,这意味着引进和培养医学信息管理人才成了医院数字化发展的必然趋势。医院实行信息数字化管理,其涉及医学学科、信息学科以及管理学等知识,三方面相互渗透融合,这就需要从事的信息管理人才是不只精通医学知识。还要精通信息的知识与技术,即“通才”+“专才”的复合型人才。然而,就目前情况而已,医学信息管理人才紧缺,需加强培养该方面人才。培养创新意识和实践能力等。医学信息管理人才必将成为医院信息化市场需求的弄潮儿。具有宽阔的发展空间和就业前景。

全文阅读

数字化医学影像学教学模式研究

[摘要]目的:通过医学影像信息系统结合传统模式在医学影像学专业学生临床教学模式中的应用,探讨数字化趋势下医学影像教学的新模式,使医学影像教学满足现代医学影像学学科发展与临床工作的需要。方法:选取南京医科大学医学影像学专业大三年级学生300名,按照随机数表法将其分为对照组和观察组,每组150名。对照组学生采用传统授课方式,观察组学生采用传统授课模式结合医学影像信息系统进行授课,对比分析两组学习成绩、教学效果评价及满意度。结果:观察组学生对影像资料的病例分析、典型征象辨认及疾病判断各项评分均较对照组具有优势,且观察组学生对教学方式新颖度、知识理解程度、知识广度、课程内容印象性以及学习积极性均高于对照组,差异有统计学意义(t=196.620,t=31.365,t=6.283,t=38.509,t=21.394;P<0.05);观察组学生对教学效果满意率为96.00%,高于对照组,差异有统计学意义(x2=20.369,P<0.05)。结论:数字化医学影像信息系统结合传统授课模式的教学方法,对提高影像学的教学质量及学生的临床实践能力具有重要作用,值得在临床医学教学中推广并借鉴。

[关键词]医学影像;数字化;实验教学;教学评价

随着科学技术的不断发展,数字化逐渐运用于医学的各个领域,特别是医学影像信息系统的运用,改变了以往临床医学影像资料繁多、查找困难的现象[1-2]。目前,医学影像信息系统(picturearchivingandcommunicationsystems,PACS)已在医学影像科室中广泛应用,其主要目的是将各种影像设备产生的医学影像通过数字化的形式保存在网站的工作平台中,需要时可通过授权很快调出,同时还可通过增加辅助诊断管理功能,为临床影像诊断工作提供帮助[3]。医学影像信息系统的广泛应用,要求对影像学专业学生的教学也做出相应调整,以适应影像学的发展,培养与时俱进的影像专业人才[4]。本研究选取医学影像学专业的学生,在日常教学中,比较医学影像信息系统与传统授课方式的效果,探讨医学影像教学的新模式[5]。

1资料与方法

1.1一般资料选取2012年1月至2015年5月南京医科大学医学影像学专业大三年级300名学生,按照随机数表法将其分为对照组和观察组,每组150名。其中,对照组中男性90名,女性60名;年龄20~24岁,平均年龄(22.25±0.21)岁;入学成绩为400~520分,平均成绩(450.23±10.43)分。观察组中男性91名,女性59名;年龄19~24岁,平均年龄(22.46±0.31)岁;入学成绩为410~523分,平均成绩(450.43±10.31)分。对照组和观察组学生的一般资料比较无差异,组间可进行良好的对比。1.2教学方法(1)对照组:采用传统授课方式对学生进行影像学学科的授课,老师通过搜集影像学资料及图像,制成幻灯片,并结合理论知识对学生授课。(2)观察组:在传统授课模式上,结合医学影像信息系统进行授课,具体措施为:①授课老师在理论知识结合相关图像资料做出幻灯片对学生进行讲解的基础上,通过影像信息系统挑选出相关临床病例,从不同角度及层面对学生进行讲解,并提出问题,让学生自行讨论,协商解决找出正确答案;②开设医学影像信息系统实验课程,让学生在实践中更多地接触数字系统,教会学生如何使用医学影像信息系统查询相关影像资料,并通过链接共享其他医院的影像信息资源,更好地了解医学影像信息系统带来的巨大方便。1.3观察指标将对照组和观察组学生的学习成绩、对教学效果的评价及满意度进行对比。①学生成绩评分采用随堂测试的方式,每次授课结束后对所有学生进行所授知识的测试,采用同一影像资料,选择统一评分标准,满分为100分;②教学效果的评价采用问卷调查的形式,主要调查内容有学习积极性、知识理解程度、知识广度、课程内容印象性以及教学方式新颖度等8项,每个项目总分为10分。1.4统计学方法采用SPSS18.0统计软件对数据进行处理,两组学生的学习成绩及对教学效果的评价用均数±标准差(x-±s)表示,两组比较采用t检验;两组学生对教学的满意率比较采用卡方检验。以P<0.05为差异有统计学意义。

2结果

2.1两组随堂测试成绩比较观察组学生的医学影像专业病例分析、典型征象辨认及疾病判断各成绩评分与对照组相比更具有优势,差异有统计学意义(t=117.281,t=74.515,t=50.106;P<0.05),见表1。2.2两组教学效果评价比较观察组学生的对教学方式新颖度、知识理解程度、知识广度、课程内容印象性以及学习积极性各教学效果评价分值均高于对照组,差异有统计学意义(t=196.620,t=31.365,t=6.283,t=38.509,t=21.394;P<0.05),见表2。2.3两组对教学效果满意度比较观察组学生对教学效果满意度为96.00%,对照组学生对教学效果满意度为78.67%,观察组更具有优势,两组相比差异有统计学意义(x2=20.369,P<0.05),见表3。

3讨论

全文阅读

数字信息化医学影像学教学模式分析

【摘要】传统医学影像学教学与临床应用的断层明显,使得临床医生在本科教育阶段对于医学影像学的重视程度不足,导致临床诊断需要和医生知识储备之间存在较大差距。因此,改变医学影像学的传统教学模式势在必行。本研究提出借助网络化、多媒体教学模式,将影像解剖学、临床病理学与医学影像学进行学科整合,开展基于学科整合的数字信息化教学模式,以期提高学生的学习自主性,提升影像学的教学品质。

【关键词】学科整合;数字化信息;医学影像学;解剖学;临床病理学;多媒体教学;教育

随着循证医学与医学影像技术的飞速发展,影像学检查在临床疾病诊断中所占比重日渐增长,然而临床医生在本科教育阶段对医学影像学重视程度不足,教学模式老旧,教学知识不能及时更新,导致临床诊断需要和医生知识储备之间存在较大差距。传统的医学影像学教学以器官系统为基础,对各器官、系统的常见病、多发病影像学表现进行“以教师为中心”的教学,实践课程多为理论课的复习和挂片读片模式对理论知识进行实践,教与学差距较大,教学与临床应用断层明显[1]。可见推行医学影像学教学模式改革是弥补目前传统教育模式不足的可行途径。为推动课堂教学革命,开展以学生发展为中心的教学模式,推广智慧化教室建设,提高课堂教学水平,提高教学质量,激发学生求知欲,引导学生自主管理、自主学习,提升学生学习效率,打破传统医学影像学教育死板、教条的灌输式教育模式,为医学领域输送更多高素质高质量人才,本研究组提出借助网络化、多媒体教学模式,将影像解剖学、临床病理学与医学影像学进行学科整合,开展基于学科整合的数字信息化教学模式。

1医学影像学常规教学模式

医学影像学教学模式多采用集中学习理论课+分组实践教学的模式,其中理论授课旨在使学生了解各检查设备的成像原理及各系统正常影像学特征,并掌握多发病、常见病的影像学表现及诊断和鉴别诊断要点[2]。实践教学则通过观看影像资料,了解X线、CT、MRI、超声以及核医学等影像技术的应用范围以及识别常见病多发病的影像学特点[3]。

1.1集中学习理论课

集中进行理论教学,虽然能够以系统为基础对常见病、多发病的影像学表现和鉴别诊断进行系统讲授,但授课方式单调,以灌输式教学为主,学生主要通过背诵疾病的诊断和鉴别诊断要点来应付考试,没有真正的领会应用。该模式虽强调对影像理论知识掌握的重要性,但对学生自主应用影像学检查和阅片能力的培养不足,学生的学习主动性差,学习内容与临床实际需要不匹配,教与学脱节,缺乏积极互动[4-6]。故而改变传统教学模式,将多媒体应用于教学中是很有必要的,不仅有利于提高学生的参与感,提升学生学习主动性,激发对医学影像学的学习兴趣,还可以促进学生对知识的深化理解,更好的发展教育学。此外,传统理论教学多以医学影像学教材为参考教材进行理论授课,教材中影像解剖学和病理学整合的知识量不足,导致授课时学生对影像学基础掌握不牢、理解不深入,因而在临床实践中无法将理论知识进行转化,为临床的诊治服务。

1.2传统分组实践教学

全文阅读