首页 > 文章中心 > 数字电路分析论文

数字电路分析论文范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

数字电路设计分析论文

摘要:三电平整流器由于其独特的优点,受到了越来越多的重视。介绍了三电平桥式整流器的工作原理,并用数字信号处理器对其控制系统进行了实现,说明了全数字控制系统的硬件设计和软件设计的方法。仿真和实验结果验证了理论研究的结果。

关键词:数字信号处理器;三电平;PWM整流器;功率因数校正

引言

三电平(ThreeLevel,TL)整流器是一种可用于高压大功率的PWM整流器,具有功率因数接近1,且开关电压应力比两电平减小一半的优点。文献[1]及[2]提到一种三电平Boost电路,用于对整流桥进行功率因数校正,但由于二极管整流电路的不可逆性,无法实现功率流的双向流动。文献[3],[4]及[5]提到了几种三电平PWM整流器,尽管实现了三电平,但开关管上电压应力减少一半的优点没有实现。三电平整流器尽管比两电平整流器开关数量多,控制复杂,但?具有两电平整流器所不具备的特点:

1)电平数的增加使之具有更小的直流侧电压脉动和更佳的动态性能,在开关频率很低时,如300~500Hz就能满足对电流谐波的要求;

2)电平数的增加也使电源侧电流比两电平中的电流更接近正弦,且随着电平数的增加,正弦性越好,功率因数更高;

3)开关的增加也有利于降低开关管上的电压压应力,提高装置工作的稳定性,适用于对电压要求较高的场合。

1TL整流器工作原理

全文阅读

无线数字发射电路设计分析论文

摘要:nRF902是一个单片射频发射芯片,它内含频率合成器、功率放大器、晶体振荡器和调制器等电路,能够发送数字信号。nRF902采用FSK调制,可工作在868MHz的ISM频段。文中给出了nRF902的结构、原理、特性及应用电路。

关键词:无线发射FSK射频发射器nRF902

1概述

nRF902是一个单片发射器芯片,工作频率范围为862~870MHz的ISM频带。该发射器由完全集成的频率合成器、功率放大器、晶体振荡器和调制器组成。由于nRF902使用了晶体振荡器和稳定的频率合成器,因此,频率漂移很低,完全比得上基于SAW谐振器的解决方案。nRF902的输出功率和频偏可通过外接电阻进行编程。电源电压范围为2.4~3.6V,输出功率为10dBm,电流消耗仅9mA。待机模式时的电源电流仅为10nA。采用FSK调制时的数据速率为50kbits/s。因此,该芯片适合于报警器、自动读表、家庭自动化、遥控、无线数字通讯应用。

2引脚功能和结构原理

nRF902采用SIOC-8封装,各引脚功能如表1所列。

表1nRF902的引脚功能

引脚端符号功能

全文阅读

数字式频率电路集成分析论文

摘要:TSA5526是Philips公司推出的通用数字频率合成器集成电路,该芯片具有电路简单、与单片机接口方便的特点,可解决频率合成器设计当中的难题。文中介绍了TSA5526的主要特点、引脚功能、工作原理及应用电路。

关键词:TSA5526;频率合成器;分频器;电荷泵

1概述

频率合成技术是近代无线电技术发展中的一门新技术,也是现代通信系统中的关键技术之一,它通常利用一块晶体或少量晶体组成标准频率源,然后通过合成方法产生各种所需的频率信号。这些频率信号与标准频率源具有相同的频率稳定度和准确度。使用该技术构成的电路在通信设备中称为频率合成器。频率合成器的种类很多,目前普遍采用的是数字式频率合成器。数字式频率合成器由晶体振荡器、固定分频器、鉴相器、滤波器和VCO等组成,晶体振荡器输出的频率信号经固定分频器后得到标准频率,而VCO输出的频率信号经可变分频器分频后得到实际频率信号,两信号在鉴相器中经相位比较产生的环路锁定控制电压将通过滤波器加到VCO上,以对实际频率信号进行控制和校正,直到环路锁定。当所需信号频率较高时,该电路的设计、制作和调试难度较大,通常只能依靠专业厂家来完成,不仅成本高,而且生产周期长。TSA5526芯片是Philips公司推出的通用数字频率合成集成电路,它将晶体振荡器、固定分频器、鉴相器、滤波器等电路集成在一块芯片上,其主要特性参数如下:

输入射频信号的频率为:64~1300MHz;

输入射频信号的电平为:-28~3dBm;

输出误差调整电压为:4.5~33V;

具有锁定检测功能;

全文阅读

“数字逻辑”课程教学方法探讨

摘要:“数字逻辑”是计算机专业一门重要的硬件基础课程。结合多年的教学实践经验,对数字逻辑的教学方法进行深入探讨,在课堂教学中采用任务式教学,增加课堂讨论,借助仿真软件进行电路演示,利用硬件描述语言进行复杂数字系统设计;在实验教学中将传统实验、仿真实验与硬件描述语言实验等有机结合、互为补充,激发学生的学习兴趣,培养学生的综合能力,取得了很好的教学效果。

关键词:数字逻辑;课堂教学;实验教学

作者简介:徐银霞(1979-),女,湖北武汉人,武汉工程大学计算机科学与工程学院,讲师。(湖北 武汉 430073)

中图分类号:G642.421 文献标识码:A 文章编号:1007-0079(2013)28-0104-02

“数字逻辑”是计算机专业一门重要的硬件基础课程,其主要目的是使学生掌握数字系统分析与设计的理论知识,熟悉各种不同规模的逻辑器件,掌握各类逻辑电路分析与设计的基本方法,为数字计算机或其它硬件电路分析与设计奠定基础。[1]“数字逻辑”课程教学一般采用课堂教学与实验教学相结合的方式,使得学生掌握数字电路分析与设计的一些理论知识,同时培养学生电路设计、制作与调试以及分析问题、解决问题的能力。学生的学习效果一直是教学当中的重中之重,因此如何有效利用有限的理论与实验教学时间培养学生的综合素质是一个值得探讨的问题。笔者结合多年的教学实践经验,分别对课堂教学和实验教学环节就“数字逻辑”课程的教学方法做一次探讨。

一、“数字逻辑”课程的课堂教学

课堂教学效果直接决定学生理论知识掌握的程度,也影响随后的实验及实践能否顺利进行。在课堂教学中采用任务式教学、课堂讨论、电路仿真演示以及硬件描述语言电路设计等方式进行教学,取得了满意的效果。

1.任务式教学

全文阅读

高职《数字电子技术》理论及实践教学探索

[摘要] 《数字电子技术》是应用电子、计算机及电子信息等专业很重要的专业基础课,不但具有抽象、较难理解的理论知识,同时也是一门实践性很强的课程。本文从理论教学、实践教学、教学考核三方面入手,对《数字电子技术》教学进行了深入研究,努力探索提高高职教学效果的方法。

[关键词] 数字电路 理论 实践教学 教学考核

《数字电子技术》是应用电子、计算机及电子信息等专业很重要的专业基础课,不但具有抽象、较难理解的理论知识,同时也是一门实践性很强的课程。教学中如果只注重理论、忽视实践,就不能激发学生学习的积极性,学生对所学知识也不能充分理解和应用;学生的实践能力和理论素养缺一不可。针对如何改革教学,做到理论、实践两不误,同时突出实际操作能力培养的问题,本文进行了阐述。

一、理论教学要根据高职教育及高职生的特点选择教学内容,把握理论上的度

高职教育是以培养企业生产、建设、管理、服务第一线的高素质实用型技能人才为目标;高职教育教学基本原则要求:“基本理论教学要以应用为目的,以必需、够用为度”;要“加强实践能力培养”。如何正确把握培养目标,根据培养需要从广而博的知识中选择、重构少而精的教学内容,是理论教学探索中首先要解决的问题。因此,教学内容要围绕技术应用能力与理论素质培养这条主线来设计学生的知识、能力和素质结构,改革过去只注重理论知识上的完整性和系统性,忽视理论知识的实用性和实践性的弊端,从应用的角度选择教学内容。《数字电子技术》的主要教学目标是通过本课程的学习使学生掌握数字电子技术的基础知识、基本理论、基本分析和设计方法,训练学生数字应用电路制作与调试的基本技能,为学习后续课程提供必要的理论基础知识和实践技能。基于本课程的教学目标和高职教育的培养目标,在教学内容的选择上突出基本理论,基本分析方法和知识的应用,忽略繁锁的集成电路内部分析和数学推导;着重外部逻辑功能的描述、分析和应用;强调外特性和主要参数。如在逻辑门电路一章中,把实际工作中运用较多的CT74S系列门作为典型电路进行分析,主要介绍CT74LS系列,对TTL集成门电路各系列的主要电气参数进行比较,使学生对各系列TTL集成门电路的特性都有一定了解;在时序逻辑电路一章中,在介绍基本电路工作原理的基础上,直接介绍中规模集成计数器、移位寄存器功能表和使用,而不必讨论它们的内部逻辑电路等等。这不但突出了中规模集成电路的应用,同时也为增加技能训练时间提供了保障。

二、技能教学要突出职教培养目标,培养和训练学生的熟练操作和设计创新能力

数字电子技术的实践目标是在巩固理论教学的基础上,培养学生对知识灵活运用的综合能力。实践内容可以分为基本技能实践教学、和综合技能训练实践教学两大类。

1.基本技能实践教学

全文阅读

基于Multisim的数字电路课程的教学改革

摘要:本文结合数字电路课程中存在的若干问题,提出将Multisim仿真软件应用到数字电路课堂教学中,并通过例题演示,体现了该仿真的直观性和真实性,有效的提高了教学质量。

关键词:Multisim 计数器 数字电路 仿真

中图分类号:TP368.12 文献标识码:A 文章编号:1007-9416(2011)12-0109-02

1、前言

传统的数字电路课程的教学是按照大纲、章节来组织的,老师讲授知识,学生学习知识,知识的生产、接受与传递只限于师生之间,无法激发学生的兴趣。随着信息技术和教育大众化的发展,知识逐渐的表现为全球化、去地方化和去个人化,在这样的背景下,数字电路课程的改革刻不容缓。而Multisim仿真软件的出现为该课程的改革提供了基础。

2、Multisim技术

Multisim是一个原理电路设计、电路功能测试的仿真软件,能完成从电路的仿真设计到电路版图生成的全过程,有较为详细的电路分析功能,可以完成电路的瞬态分析和稳态分析,时域和频域分析、器件的线性和非线性分析、电路的噪声分析和失真分析等电路分析方法,还可以直接打印输出实验数据、测试参数、曲线和电路原理图,实验中不消耗实际的元器件、实验所需原器件的种类和数量不受限制,实验成本低,速度快,效率高,设计和实验成功的电路可以直接在产品中使用。本文在Multisim的基础上对数字电路课程的内容进行重构和改革。

3、数字电路课程教学中存在问题

全文阅读

“数字电子技术”实践教学的研究与实施

摘要:本文介绍了我院在“数字电子技术”课程的实践教学中的新措施。教学效果表明,软硬兼施的实践教学环节有力地支撑了理论教学,有效地将抽象的理论知识与数字电子技术的实现融会贯通,开拓了学生的创新思维,提高了学生分析问题和解决问题的能力。

关键词:数字电子技术;逻辑电路;实践教学;软件仿真

中图分类号:G642 文献标识码:B

1引言

“数字电子技术”是计算机专业学生必修的一门专业基础课。本课程的主要目的是使学生掌握数字系统分析和设计的基本知识与原理,熟悉各种不同规模的逻辑器件,掌握各类逻辑电路分析与设计的基本方法,为数字计算机和其他数字系统的硬件分析与设计奠定坚实的基础。

为了使学生能够真正将课本上的理论知识与实际的数字电子技术电路融会贯通,我校“数字电子技术”课程组授课教师在课堂教学的基础上,精心组织、设计该课程的相关实验,让实践教学环节成为理论教学的有力支撑,使学生更好地将理论与实际结合,高效率地吸取本学科的前沿知识。

2实验教学现状

数字电子技术主要包括小、中和大规模数字电路的分析与设计、可编程逻辑器件和现场可编程门阵列器件、数字系统分析与设计。其教学侧重整个电路的逻辑功能及其应用。在以往相当长一段时间内,由于不具备支持大规模实验的设备,数字系统仿真软件也不成熟,因此国内大多高校只基于“SD―2型数字电子技术实验设备”开设了传统的中、小规模电路的实验,均未开设体现现代电子技术的中、大规模电路的实验。这导致本课程的理论不能全面与实验交融,更不能体现现代数字电子技术的核心,显然不利于学生接受该门课的知识,也与计算机技术的发展格格不入。

全文阅读

Multisim12.0仿真软件辅助数字逻辑课程教学的研究

摘要:本文讨论了运用Multisim12.0仿真软件辅助数字逻辑课程教学的方法。教师在课堂教学中借助仿真软件进行电路演示,帮助学生理解抽象的理论知识;在实验教学中通过仿真实验激发学生的学习兴趣。有效利用仿真软件对数字逻辑课程教学起到积极作用。

关键词:数字逻辑;Multisim12.0软件;仿真

中图分类号:642.0 文献标志码:A 文章编号:1674-9324(2015)07-0233-02

“数字逻辑”是计算机及电子类专业的一门重要的专业基础课程,其具有很强的理论性和实践性,要求学生通过学习既掌握数字电路分析与设计的理论知识,也能够自己动手设计调试实用的数字电路。在理论教学过程中,教师借助Multisim12.0仿真软件进行数字电路的模拟和演示,对电路的工作过程进行透彻的分析讲解,可以帮助学生深刻理解和掌握理论知识。采用Multisim12.0软件进行仿真实验,为学生提供更加灵活方便的实验环境,使学生能充分发挥想象力,按照自己的想法创建各种电路,摆脱实验箱的束缚。Multisim12.0软件的使用使得数字逻辑理论课的教学更加生动活泼,实验操作更加灵活方便,提高学生的学习兴趣和学习效率,同时也能够培养学生的自学能力和创新能力的[1]。

一、Multisim 12.0软件的特点

Multisim12.0是一个集电路原理图设计和电路功能测试为一体的虚拟仿真软件,它为数字电路仿真提供了丰富的元器件模型,如时钟信号、各类门电路、各种集成组合逻辑器件、时序逻辑器件等,同时提供了种类齐全的虚拟仪器,如函数信号发生器、示波器、数字万用表、逻辑分析仪、逻辑转换仪和直流电源等。Multisim12.0仿真软件具有详细的电路分析功能,可以设计、测试和演示各种电子电路,它将原理图的创建、电路的测试分析、结果的图表显示等全部集成到同一个电路窗口中,具有和真实环境一致的可视化界面,整个操作界面就像一个实验工作台,与实物操作几乎相同[2]。

二、Multisim12.0应用于“数字逻辑”课堂教学

在“数字逻辑”课程的课堂教学中,对于数字电路分析与设计的理论知识很多学生会觉得枯燥且难以理解,借助Multisim12.0仿真软件进行数字电路的模拟和演示,可以直观地显示电路的功能和波形,把理论知识和电路运行结果加以对照、分析,可以提高课堂教学效率。同时还可以提出问题进行课堂讨论,活跃气氛,激发学生学习兴趣。

全文阅读

数字芯片设计在数字电路实验教学中的应用研究

摘要:本文分析了传统数字电路实验教学中客观存在的弊端,利用Quartus Ⅱ可编程逻辑器件设计软件和FPGA开发板,提出了基于FPGA的数字电路实验教学改革方案,激发学生的积极性,提高综合分析数字电路图的能力和操作能力。

关键词:教学改革;教学方法;教学资源;实践创新

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)49-0050-02

为了适应当今世界经济、科技、文化发展趋势,满足社会各界对当代大学生的复合型、应用型和创新型人才要求,2012年10月教育部高等教育司编辑出版了《普通高等学校本科专业目录和专业介绍》[1]。新版专业目录中重新规定了专业划分、名称及所属门类,并提出了各专业的主要核心课程、专业实验和实践性教学环节等课程的示例。数字电路课程是电气、电子信息、自动化和计算机类专业的一门专业基础课程,是一门理论性和实践性都较强的课程。它的主要任务是通过学习数字电路的基本概念、基本原理和基本技能,使学生在数字电路及数字系统方面具有一定的理论水平和实践技能,该课程对于微型计算机原理、数字信号处理和数字图像处理等学好后继主要专业课程必不可少的基础知识,并提高学生的工程实践能力都有着极其重要的作用[2-4]。本研究通过立体式实验课程设计,把理论教学与实验课、课程设计、实训课程结合起来,大学一年级开始初步接触专业课程,可以增强教学的互动性、趣味性,培养学生学习单片机课程的积极性、创造性,并进一步降低了实验教学成本,具有一定的实际意义。本文的第一部分分析了数字电路课程的教学安排、学时分配和考核体系,第二部分主要分析了传统的数字电路实验教学模式和数字电路实验教学中遇到的问题,第三部分提出了数字电路实验教学中引入数字芯片设计的必要性,并提出了基于Quartus Ⅱ软件和FPGA开发板的实验内容和具体教学安排。

一、数字电路课程分析

在教学安排方面,数字电路课程是一门理论性和实践性都较强的基础课程,基本上不需要高等数学、大学物理、复变函数等前期理论基础。因此,可以安排在大一的第二学期(四年制本科);大一的短学期中可以安排“数字电路实训课程”,通过数字电路实训课程进一步提高学生的操作能力和创新能力;大二的第一学期中可以安排“数字芯片设计课程”或“集成芯片设计课程”,在此课程中首先学习VHDL语言,然后再学习Quartus Ⅱ可编程逻辑器件设计软件的使用方法和上机实验,并通过FPGA开发板来学习数字系统的设计和应用;基于以上基础,大二的第二学期学生可以开始在教师的指导下参加校内外各种设计竞赛,并在大二开始为即将学习的微型计算机原理、数字信号处理和数字图像处理等专业必修和选修课程奠定坚实的理论基础。学时安排方面,数字电路理论课程可以安排3学分/48学时,实验课程1学分/16学时,共4学分/64学时。课程改革积极探索教学活动和考核方式的多样化,考核形式可以包括笔试、实验课程、综合性创新设计等。该课程的考核可以包括:①期末的笔试,考核基本知识,理论课程成绩占60%;②实验课程成绩占15%;③平时成绩占5%;④综合性创新设计成绩占10%。

二、数字电路实验中存在的问题分析

数字集成芯片是在半导体表面上以CMOS门电路设计的现代化电子产品,由于CMOS门电路直接设计数字芯片时会出现时滞性、占用芯片面积、耗电量、结构复杂等一系列问题。而CMOS门电路的各子系统是利用与、或、非、同或、异或等逻辑门电路模拟化,同时实际设计的数字集成芯片内部电路图结构是无法看到的。因此,数字电路课程历来是学生感到“抽象”的课程。在数字电路实验课程方面,长期以来普遍利用74LS系列芯片实现理论课程上学到的触发器、译码器、选择器等组合逻辑电路,通过该实验可以提高学生的基本逻辑电路的功能及测试技能。但是,传统的数字电路实验教学主要存在以下弊端:①形式单一、方法呆板,虽然利用74LS系列芯片实现理论教学上学到的逻辑电路,但是不能完全解决学生对数字电路课程感到“抽象”的问题;②理论与实践脱节,在理论教学上,教师一般采用理论波形图来描述输入/输出信号之间的逻辑运算结果,一般不采用总线(Bus)波形图描述多位数的信号。在实验教学上,一般采用模拟开关描述二进制数的输入信号,并LED灯描述一位数的输出信号,因此,在理论和实验教学上学生没有机会接触实际数字集成芯片的设计和信息处理环境;③缺少互动性和创新性,学生自己提出某系统的逻辑控制及流程之后,利用基本的74LS系列芯片实现系统级别的数字系统时芯片的使用数量、输入信号的控制、输出信号的分析等会面临较大的困难,难以提高学生的积极性和创新性。

全文阅读

数字电路实验课程中引入Multisim仿真软件的探索研究

【摘要】数字电路实验课程是对数字电路课程的一个引申和拓展,在理论的基础上加深学生对数字电路实际应用的理解,本文从传统的数字电路教学模式出发,在其基础上加入仿真内容,通过传统方式和仿真的结合,使学生深入的理解数字电路的实际工作原理。

【关键词】数字电路实验 Multisim13 仿真

【中图分类号】G43 【文献标识码】A 【文章编号】2095-3089(2015)11-0238-01

数字电路作为高校电子类专业的一门必修的基础课程,对后续课程的学习有着极其重要的引领作用,数字电路是一门实践性较强的科目,若只有理论而不付诸于实践,很难达到一个好的学习效果,因此,数字电路实验就凸显出其重要性,通过数字电路实验课程,可以加深学生对理论知识的理解,也可加强学生的动手能力。但是,在数字电路教学模式上,很多学校还采用较为传统的方式来进行,即通过数字电路实验箱来搭接电路,然后验证其功能。这种模式的好处在于学生可以接触到实物,通过搭接实物电路可以对理论知识起到很好的巩固作用,弊端在于局限性较大,学生只能用手中拥有的芯片来搭接电路,且必须在实验室当中才可以,受芯片种类和地点影响较大,无法调动学生课外学习的积极性,如果在传统基础上加入仿真软件的学习,一来是对传统教学模式的一个补充,其次可以让学生不受芯片种类和地点的限制,只要有计算机就可以学习,使学生的学习从课内扩展到课外,有利于提高学生的主观能动性,帮助学生更好的学好这门课程。

1.Multisim软件功能简介

Multisim软件是一个专门用于电子线路仿真与设计的EDA工具软件,最新版本是Multisim13.0。Multisim是一个完整的集成化设计环境,通过Multisim计算机仿真与虚拟仪器技术可以很好地解决实验教学中的局限性问题,学生可以很方便地把电路用计算机仿真真实的再现出来。

Multisim软件特点

(1)图形界面直观:整个操作界面就像一个数字电路实验平台,元器件和测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,仪器的操作方式与实物几乎一样。

全文阅读