首页 > 文章中心 > 无人机遥感技术

无人机遥感技术

开篇:润墨网以专业的文秘视角,为您筛选了八篇无人机遥感技术范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

无人机遥感技术范文第1篇

【Keywords】 UAV remote sensing technology; geological disasters; regional disaster monitoring

【中图分类号】P231 【文献标志码】A 【文章编号】1673-1069(2017)03-0090-02

1 引言

在对地质灾害区域进行检测的过程中,传统航拍的方式不仅时效较低,同时空间的分辨率相对较低,从整体的视觉效果方面进行观察得知,其综合效果较差。随着科技的进步,人工智能化水平加强,无人机技术得到了广泛应用与发展,从单纯的军事用途逐步应用于民用及商用,为人们的生活和工作带来了较大的便捷。由于地质灾害对人们生活产生极大的影响,掌握地质灾害发展的真实状况能在一定程度上降低灾害的不良影响。因此,本文主要从以下几个方面进行论述。

2 无人机遥感技术简介

2.1 无人机遥感系统组成

在无人机遥感系统当中,主要划分为三大部分:

①地面系统。该系统中主要包含了地面辅助设备、地面监控分系统、起飞着陆系统的地面部分、遥控遥测系统地面部分以及地面遥感测站等。

②任务载荷。该系统中主要包含了火控系统、目标探测系统以及武器外挂系统。而目标探测系统中又分为光电系统、雷达系统和激光测距。

③飞机系统。无人机遥感机因飞行的灵活性、适于低空飞行作业和操作便捷等特点,飞行过程中能获取高分辨率的成像,在测绘领域当中得到广泛的应用[1]。

2.2 无人机遥感技术的特征

通过上文的简介得知,无人机遥感技术的应用能改善传统航拍的影像效果。在其实际工作中,无人机遥感测绘一般以无人机为主要载体,并携带相机和传感设备作为辅助,能准确快速地完成低空小范围区域高精度的测绘作业,其主要优势是应用范围大,投入成本低,这些特点使得其具有的优势多于有人机测绘。

此外,无人机遥感技术具有的另一特征是对测绘数据和信息高效处理的能力,无人机遥感系统的测绘作业以遥感数据为主,此系统精准空间分辨率高,时效性强,测绘周期短,同时相对于测绘数据而言主要是对影像数据的处理研究。依据一般无人机技术特点优势而言,对影像的处理包括影像匹配、像素处理以及正摄纠正等。对数据和图像的处理技术使得到结果的真实性较高[2]。

3 无人机遥感技术在地质灾害检测中的应用分析

3.1 快速测绘

在采用无人机遥感技术时,由于其和传统测绘方式相比,最大的特征是具有灵活机动的飞行特征,无人机的飞行速度较快、重复周期较短,能在短时间内实现所要拍摄的图像,同时能达到短周期内重复进行拍摄,应用这样的检测方式对地质灾害发生地区产生的影响相对较小,能起到对灾情动态检测的作用。辟如,六旋翼无人机在鲁甸地区地震中的应用,拍摄的速度为72次/s,拍摄的精度高达40mm。由于无人机的可操作性较强,参与操作的人员只需要在短时间内进行专业的培训,便能开展正常的测绘工作。对地震灾区进行无人机测绘的结果如图一所示。从测绘效率的角度得知,在测绘活动开展的第一次飞行的7min内,完成测绘的面积为100000m2;从测绘精准度的角度而言,精?识却锏?40mm,通过对图片的观察能清楚地看到树木的纹理分布;依据测绘可视化的角度,处理并合成的影像数据可以从电脑上清楚地看到地质灾害区域的俯视图和仰视图,从不同角度访问全面地了解到灾区的真实状况,这对灾情影响范围的控制和救援工作的开展提供了切实可行的参考。

3.2 地质灾害排查测评

通过采用无人机遥感技术,得到了相应的影像数据,提取灾区地质状况的二维和三维的图像,实现了对灾区地质地貌的全面展示。在对地质灾害程度进行测评时,无人机遥感测绘技术作为数据的主要来源,能够充分地利用GIS技术,针对地质灾区的内地质条件、气候预测还有植被破坏的程度等方面的内容予以专题图的绘制,采用GIS对空间分析的能力,来对地质灾害区域进行等级评定,为地质灾害区域将要发生灾害次生的类型、规模以及区域等方面的信息予以全面的标识,这样等级评定,对后续救援路线和资源的分配具有重要的作用。

4 无人机遥感技术未来发展前景探究

在先进科学技术的支持下,无人机遥感技术得到较好的发展与应用,在地质灾害监测中,由于其自身具有灵活和精准度高的特征,在未来的发展中强化软件性能在很大程度上提升测绘的技术。硬件方面,无人机自身飞行具有稳定性、抗逆性,影像拍摄的频率得到很大的提升。从而提高影像获取的硬件支撑能力,尤其是在空间分辨率方面和对不良天气的抵抗力方面能得到适当的提升。对无人机硬件方面的改良主要是为了获取高精准度和低噪点的影像与数据,进而节省后续对图像处理的成本和时间。对于软件开发方面,最主要的发展方向是研发抗干扰能力和数据加密技术能力的提升。

无人机遥感技术范文第2篇

[关键词]无人机遥感 水利工程 应用

中图分类号:U85 文献标识码:A 文章编号:1009-914X(2015)40-0216-01

1.引言

无人机遥感技术是近年来无人机技术不断取得突破和发展的产物,将无人机遥感技术尽快、全面的应用于水利工程领域,可以使水利工程现代化发展获得强大的技术推动力,极大的提升水利工程管理的水平。

2.无人机遥感技术

无人机是指通过无线电遥控设备或机载计算机程控技术进行操控的不载人飞行器。无人机遥感技术是利用无人机技术、遥感传感器技术、遥测遥控技术、通讯技术、GPS差分定位技术和遥感应用技术,自动化、智能化、专业化的快速获取地理、资源、环境等空间遥感信息,完成遥感数据采集、处理和应用分析的技术。

无人机遥感技术平台主要由四大部分组成:飞行器分技术、测控及信息传输技术、信息获取及处理、保障技术等。

目前国内主流的无人机遥感技术是在放飞场由人工遥控无人机起飞,进入航线后切入自主飞行状态,利用惯性导航平台及全球卫星定位技术复合导航技术控制无人机按照预定航线自主飞行,并实时将飞机的飞行数据传回地面控制人员,无人机完成遥感作业任务后,切出自动飞行状态改由人工遥控降落到回收场。

2.1 无人机遥感技术的应用优势

(1)使用成本低廉。整套无人机遥感技术的购置费用大大低于卫星和载人飞机,由于其对场地和人员运用操作的技术要求也比载人飞机低的多,且技术较为成熟,因此日常运行维护简单、方便、可靠。目前的无人机基本都采用电驱动和燃油驱动两种方式,电驱动一般采用锂聚合物电池驱动直流电动机带动无人机飞行,电池可重复充电若干次。

(2)安全作业保障能力强。由于无人机遥感技术可采用自主和地面遥控两种作业方式,并且可以随意切换工作方式,因此无人机遥感技术的操作人员可在需要进行作业的高危地区控制无人机遥感技术开展工作,不需要人员进入现场,从而回避了操作人员的安全风险。

(3)遥感数据精度高。由于无人机可以控制在低空飞行,所携带的精密遥感设备可获取高分辨率的遥感影像资料。这种高分辨率影像资料可以让技术人员获取较小空间尺度上的地表细微变化、使得通过利用高分辨率遥感影像资料来监测地质和人为活动对水利工程周边的影响成为现实。

(4)具备机动快速的应急反应能力。无人机遥感技术体积小、质量轻、操作简单、转场迅速,起降条件受场地限制较小,在广场、公路或其他较开阔的硬质地面均可完成短时短距起降,快速获取遥感数据。

(5)能够克服云层获取数据。在很多地区由于受天气影响, 导致云层较厚, 像卫星光学遥感等方式无法获取数据。而无人机可在云层下方飞行,完全可以不受多云天气条件的制约,从而可以克服云层获取遥感数据。

(6)可实现大区域、长航时及定点、定区域遥感监测。目前国内较先进的民用无人机可实现持续飞行 1 600 km,滞空时间16 h以上,飞行前可一次性设定超过100个航点。在飞行完原设定所有航点后,技术人员可实时上传新航点,保证飞控技术的持续工作,避免了无人机降落后重新设定航点的操作环节。

(7)实现多种任务的应用。无人机遥感技术可以为多种小型遥感传感器提供了良好的搭载平台,如多光谱仪、热成像仪、气象传感器、大气采样器、合成孔径雷达等。使用者可以根据任务性质和任务目的针对性的选用相应的遥感装置,从而保证了多种任务的综合应用,实现了该技术运用范围的最大化。

3.无人机遥感技术在水利工程管理中的应用

3.1 无人机遥感在水利工程防汛防旱应急抢险中的应用

无人机在防汛防旱检查中,可克服交通不便、情况危险等不利因素,迅速赶赴目标区域,立体地查看目标区的地形、地貌和水工建筑物、堤防的完好程度。利用机载遥感装置,可实时向后方传递影像、图片等信息资料,监视汛情旱情发展,为防洪决策提供准确的信息来源。小型无人机携带非常方便,在到达一定区域后将其放飞,操作人员可以在安全地域内操控其飞行,并进行相关信息的实时采集和监控,大大地降低工作人员的工作难度,在防汛抢险中的人身安全也可以得到进一步的保障 。

3.2 在水利工程水行政执法中的应用

水利工程管理范围内的水域大多有着面积较大、位置偏远、交通不便的特点,其巡查和执法工作很难做到全面细致。水利部门可采用无人机遥感技术定期或者适时获取该区域的遥感影像,通过逐年影像的分析比对和对适时影像的研判,可以清楚地了解到水利管理范围内生态环境变化和人为活动痕迹的动态演变情况,同时遥感影像也可作为水行政执法的依据。当前,污染物向江河湖泊非法排放情况日益复杂、变化频繁,以往人工定期巡查的方式根本无法及时发现并有效处理。无人机遥感技术对排污口污染状况的实时监测可以快速跟踪突发水体污染事件,捕捉违法污染源并及时取证,为水行政执法工作提供及时、高效的技术平台。

3.3 在水利工程运行管理中的应用

利用无人机遥感的高分辨率影像以及高精度GPS技术相结合的方法可以为工程管理单位全范围了解重要水工建筑物以及边坡挡墙、防汛道路等水利设施的完好状态,根据所获影像反映出的问题及时采取加固、维修和改造的措施,从而可以有效避免水利设施险情的发生。在水利工程运行期间,无人机遥感技术可以实时监控工程运行期间上下游周边水域出现的各种突发状况。比如在一些泵站、水闸运行期间,其周边水域的水草等水上漂浮物可能会在进水口不断大量积压,如果任其进入流道会对运行中的闸站产生机组效率下降、水泵叶片损坏,闸门门槽卡塞等一系列不利影响。通过无人机遥感技术可以适时掌控周边水域水草漂浮物分布情况、为提前组织人员打捞,清除这些水上漂浮物,为保证闸站正常运行提供最直观的图像依据。又如在太湖流域,蓝藻的生长周期短,一旦出现爆发性生长,其影响范围广,对周边城市的供水安全会造成很大压力,而通过无人机遥感技术的适时监控可以准确判断出太湖蓝藻爆发的影响区域,为随后开展清除打捞工作、开启闸站加快水体流通等科学调度提供最直接的图像资料和决策依据。

4.无人机遥感技术在水利工程管理中的运用规划

虽然无人机遥感技术有着无可比拟的技术优势,但作为新兴技术领域,如何科学、合理的运用这一先进平台,为水利工程管理服务,还有相当多的路要走。总体来说需要做到以下几点:

(1)统一部署。针对无人机遥感技术的应用区域以及需求单位的情况,制定无人机遥感技术的采购、运用以及日常管理的规划方案,实现单次飞行,多重任务,一机多用,信息共享。做到该技术运用范围的最大化和使用成本的最优化。

(2)构建平台。针对无人机遥感技术采集到的不同数据,搭建一个基于数据分析的技术平台,通过开发多种类的后期内业应用软件,根据不同用户的要求完成遥感信息的拼接、校正和解译工作,在短时间内向用户提交技术成果。

(3)培养队伍。通过技术培训等手段培养一批既懂水利业务知识又懂航空遥感技术、既懂外业飞行又懂内业处理的技术骨干,建立一支无人机遥感技术的专业队伍,确保无人机遥感技术的可靠运用。

鉴于无人机遥感技术有着其独一无二的应用优势,随着无人机技术和遥感技术的不断发展和成熟,无人机遥感技术作为一种强大的技术支撑,将能够有力推动水利工程管理实现信息化、精细化、现代化。

参考文献

无人机遥感技术范文第3篇

关键词:无人机遥感;发展现状;应用领域;前景展望

0 引言

无人机遥感(Unmanned Aerial Vehicle Remote Sensing ),是利用先进的无人驾驶飞行器技术、遥感传感器技术、遥测遥控技术、通讯技术、GPS差分定位技术和遥感应用技术,具有自动化、智能化、专用化快速获取国土、资源、环境等空间遥感信息,完成遥感数据处理、建模和应用分析的应用技术。无人机遥感系统由于具有机动、快速、经济等优势,已经成为世界各国争相研究的热点课题,现已逐步从研究开发发展到实际应用阶段,成为未来的主要航空遥感技术之一。

1 无人机遥感介绍

无人机飞行器与航空摄影测量相结合,成为航空对地观测的新遥感平台被引入测绘行业,加上数码相机的引入,就使得“无人机数字遥感”成为航空领域的一个崭新发展方向。“无人机数字遥感”有低成本、快捷、灵活机动等显著特点,可成为卫星遥感和有人机遥感的有效补充手段。

无人机飞行器遥感技术有其他遥感技术不可替代的优点,可成为卫星遥感的有效补充手段,该技术主要涉及飞机平台、测控及信息传输、传感器、遥感空基交互控制、地面实验/处理/加工、以及综合保障等相关技术领域。我国无人飞行器航空遥感技术的进步不仅表现在无人飞行器的研制,还表现在正好适用于航空遥感的飞行控制系统、遥感通讯系统的研制,更表现为轻小型化传感器及其单反数码相机,并配备有姿态稳定平台,可快速获取城镇大比例尺真彩色航空影像。

目前的无人机遥感系统多使用小型数字相机(或扫描仪)作为机载遥感设备,与传统的航片相比,存在像幅较小、影像数量多等问题,针对其遥感影像的特点以及相机定标参数、拍摄(或扫描)时的姿态数据和有关几何模型对图像进行几何和辐射校正,开发出相应的软件进行交互式的处理。进一步的建摸、分析使用相应的遥感图像处理软件。

2 国内外无人机遥感的发展现状

无人机出现在1917年,早期的无人驾驶飞行器的研制和应用主要用作靶机,应用范围主要是在军事上,后来逐渐用于作战、侦察及民用遥感飞行平台。20世纪80年代以来,随着计算机技术、通讯技术的迅速发展以及各种数字化、重量轻、体积小、探测精度高的新型传感器的不断面世,无人机的性能不断提高,应用范围和应用领域迅速拓展。续航时间从一小时延长到几十个小时,任务载荷从几公斤到几百公斤,这为长时间、大范围的遥感监测提供了保障,也为搭载多种传感器和执行多种任务创造了有利条件。

传感器由早期的胶片相机向大面阵数字化发展,目前国内制造的数字航空测量相机拥有8000多万像素,能够同时拍摄彩色、红外、全色的高精度航片;中国测绘科学研究院使用多台哈苏相机组合照相,利用开发的软件再进行拼接,有效地提高了遥感飞行效率;另外激光三维扫描仪、红外扫描仪等小型高精度遥感器为无人机遥感的应用提供了发展的余地。

现在无人机遥感技术可快速对地质环境信息和GIS数据库进行更新、修正和升级。为政府和相关部门的行政管理、土地、地质环境治理,提供及时的技术保证。

随着我国改革开放的逐步深入,经济建设迅猛发展,各地区的地貌发生巨大变迁。以无人驾驶飞机为空中遥感平台的技术,正是适应这一需要而发展起来的一项新型应用性技术,能够较好地满足现阶段我国对航空遥感业务的需求,对陈旧的地理资料进行更新。

无人机遥感航空技术以低速无人驾驶飞机为空中遥感平台,用彩色、黑白、红外、摄像技术拍摄空中影像数据;并用计算机对图像信息加工处理。全系统在设计和最优化组合方面具有突出的特点,是集成了遥感、遥控、遥测技术与计算机技术的新型应用技术。

3 无人机遥感的应用领域及发展前景

随着无人机技术的高速发展,越来越多地被用于影像获取,如在气象监测、资源调查与检测、测量、突发事件处理等方面取得了丰硕的成果。

(1)台湾大学理学院空间信息研究中心利用无人机拍摄低空大比例尺图像,配合FORMOSAT2分类进行异常提取,解译桃园县非法废弃堆积物(固体垃圾等),用于环境污染和执法调查。

(2)美国Nicolas Lewyckyj等人利用UAV-RS技术在北卡罗莱纳洲进行自然灾害调查,通过正射影像处理与分析准确评估场房和村庄的损失。显示了无人机遥感技术具有的快速反映能力,为灾害的治理提供了及时、准确的数据。

(3)日本减灾组织使用RPH1和YANMAHA 无人机携带高精度数码摄像机和雷达扫描仪对正在喷发的火山进行调查,无人机能抵达人们难以进入的地区快速获取现场实况,对灾情进行评估。为核电站及其它核设施的管理提供基础数据。

(4)我国首个成立的Quickeye(快眼)应急空间信息服务中心,是我过无人机应急遥感应用的开创尝试和遥感应用典范。其基于的无人机平台即为例图所示Quickeye(快眼)系列无人机,在不到两年的时间内,该机型已成功作业近10万平方公里,广泛应用于1:1000,1:2000成图,及测绘、应急领域。

综上所述,无人机作为一种新型的遥感平台将得到广泛应用。目前最常用的遥感平台是卫星和有人驾驶的飞机,无人机平台已渐渐显露出它的重要性。遥感发展的一个总的方向是高空间分辨率、高光谱分辨率和高时间分辨率。所以无人机遥感在提高时间分辨率方面具有独特的优势。随着多光谱传感器水平的提高,重量和体积下降,无人机遥感在提高光谱分辨率方面同样具有潜力。

4 结束语

无人机遥感作为一种新的测绘方式具有很多优势且实际应用广泛,随着设备的更新,技术的发展与完善无人机遥感将在测绘系统中发挥重要的作用,并且将成为现代国家对地观测体系中不可或缺的重要组成部分,也会越来越广泛的应用于民用生活。

参考文献

无人机遥感技术范文第4篇

关键词:无人机遥感测绘技术;工程测绘;应用探究

DOI:10.16640/j.cnki.37-1222/t.2018.10.125

0前言

經济的快速发展促使了人们对于工程测绘质量提出了更高的要求,推动着相关技术的改革和创新,无人机遥感测绘在此背景之下应运而生。作为一种新型测试技术,无人机遥感测绘有着其他手段所无法比拟的优势,涉及了多个层面的内容,对于提高测绘工作的精度和效率都有表现出了很明显的优势,研究无人机遥感测绘技术在工程测绘中的应用的相关问题,对于促进无人机遥感测绘技术更快更好地发展有十分重要的现实意义,下面笔者将针对相关问题展开论述:

1无人机遥感测绘技术简介与发展现状

无人机遥感测绘技术又叫无人机航测遥感技术,是一种借助无线电设备控制无人驾驶的飞行设备,进而快速获取信息的一种新技术,集合了无人驾驶飞行器技术、遥感传感器技术、通讯技术、gps差分定位技术等一系列高科技技术,实现了对于国土资源、自然环境等空间遥感信息的智能化、专业化、快速化处理,并能够对相关数据进行处理、建模和分析。整个无人机遥感测绘技术系统包含无人飞行器平台、高分辨率数码传感设备、GPS导航定位系统、数据处理系统等多个部分。

无人机遥感测绘技术应用的时间相对较短,只有几年的时间,但是凭借着其优势,发展速度很快,且应用范围越来越广泛,也带动了无人机产业的快速发展,不仅为工程测绘工作带来了极大的便利,提供了良好的技术支持,还促进了我国经济和科学技术的快速发展。尤其是低空遥感技术的不断发展成熟,与无人机技术进行了完美的结合,实现了无人机的自动导航系统,充分地发挥了优势,得到了十分广泛的应用,并逐渐地走出国门,走向国际市场[1]。

2无人机遥感测绘技术的优劣势分析

无人机遥感测绘技术的优势体现在以下几个方面:

2.1设备操作简单方便,安全可靠

无人机运行通过遥感操作实现,不需要驾驶员亲自驾驶,不仅大大简化了设备结构,而且降低了设备的重量,提高了无人机设备的灵活性,同时工作人员的人身安全得到了充分的保障,提高了可靠性。

2.2影像清晰,处理测量信息效率更高

无人机测绘拍摄的影像有着更高的分辨率,在对复杂测绘数据的分析处理方面十分高效,且与其他技术有很强的兼容性,比如GIS等,进一步提高了效率。

2.3数据信息处理的成本费用更低

无人机系统的整体造价与传统航拍飞机相比要低很多,有关无人机驾驶员的培训工作也相对比较容易,时间更短,且无人机设备通常是由碳纤维复合材料组成,对于设备的后期维护保养工作也比较简单,整体成本更低[2]。

2.4监测范围更大,宏观性更强

通过调整无人机的飞行高度,可以对不同范围的区域进行测绘,飞行高度越高,测绘范围越大,精度相对较低,反之精度较高,也可以采用多架次的无人机配合监测,借助光谱分析来获得监测区域的数据信息。

无人机遥感测绘也存在一定的劣势,比如飞行稳定性、因过分依赖通讯系统而容易扰、传感器控制精度问题等,需要在以后的研究中逐一解决。

3无人机遥感测绘技术在工程测绘中的应用

无人机遥感测绘技术在工程测绘中的应用,大致包括以下几个方面:

3.1无人机航拍技术在工程测绘中的应用

工程测绘过程中存在诸多的不确定因素,比如测绘环境复杂、测绘周期长、测绘难度大等等,无人机航拍可以有效弥补传统测绘方式的缺点和不足,大大降低工程测绘的难度,有效地提高测绘效率,得到清晰精确的影像和数据信息,无人机上自带的相机、扫描仪及计算机系统等可以进行全方位多角度的拍摄,并对数据进行储存和加工,尽可能地将外界因素所带来的不利影响降到最低[3]。

3.2无人机低空航拍技术在工程测绘中的应用

无人机低空航拍技术可以针对测绘环境较差的目标进行测绘,能够有效地提高图像采集的清晰度和精确度,提升测绘应急保障服务水平,保证测绘数据的真实性和可靠性,有效促进国土资源遥感监测和国土资源规划等工作的顺利开展。无人机低空航拍的精确度高、可靠性好、反应灵敏迅速,有着较大的应用范围,值得大力推广,需要进一步做好研发工作,健全相应的服务体系。

3.3无人机数据采集处理技术在工程测绘中的应用

无人机数据的采集处理通常情况下是通过手动和自动两种形式来实现,手动方式通过远程控制无人机遥感技术,来对特定的采集目标进行影像和数据的采集,结合实际需求对无人机的采集方向、角度、维度等进行调整,保证数据采集的准确;自动方式则主要借助设备自带的计算机系统来进行采集并加密,提高测绘数据信息的安全性和可靠性[4]。

4结语

无人机遥感技术范文第5篇

【关键词】无人机;地质灾害;监测;测绘

1 无人机现状

无人机,全称为无人驾驶飞机,种类繁多,包括固定翼机、无人飞艇机等等,无人机最主要的特点便是不需要人为驾驶便可以在复杂的空间环境中完成飞行任务,从某种角度而言,无人机又可以被称之为“空中机器人”。我国无人机发展的热潮时期为2006年至2010年这四年间,在这四年间,我国国内出现了大量的民用小型无人机公司,无人机产业已经踏上了快速发展轨道。当前,我国出名的无人机公司有大疆创新企业,国外著名的企业有Parrot和3DRobotics,三家企业中,大疆创新企业或许在国内没有多少人知道,但是在美国硅谷,大疆创新企业却是能够和苹果公司相提媲美的知名企业,由此可见,我国无人机产业在世界舞台上也是能够起到龙头作用的。步入2015年以来,我国无人机产业便快速延伸至各行各业,互联网、农业、重工业、钢铁、环保等等,而本文讨论的则是无人机在地质灾害中的应用。

2 无人机在地灾中的实施方法

当前,无人机在地质灾害中的实施方法主要分为以下几点:

首先,航拍影像。

2015年8月12日,天津滨海新区一集装箱码头发生了剧烈爆炸,爆炸事故最后造成了165人死亡,失踪8人,图1是一副新华社新闻无人机队在天津爆炸后用无人机在爆炸现场拍摄的一组照片之一。因为爆炸现场当时存放了数量庞大的危险化学品,经过爆炸,现场空气内弥漫着大量的有毒气体,所以救援机构并没有采用传统的人工采集图像手段,最后,山东总队8架消防无人机对爆炸现场进行了第一次地拍摄,获得了宝贵的高空、高清灾害现场图像,为后续救援力量提供了救援数据。无人机航拍主要是通过快眼系统,采取高分辨相机,对地质灾害发生或者预测发生的地区进行遥感影像拍摄。在飞行的途中,通过数据传输的方式,让后方机构能够快速获取灾害现场第一手资料,保障了灾害的救援力度能够快速有效地展开。

其次,航空影像处理。在无人机对灾害现场进行拍摄之后,后方数据处理人员还需要对传回来的航空影像进行进一步的处理,目前国内应用较为广泛的是DPGrid航测处理软件。处理过程为:第一,用专业图像调整软件将传输回来的航空影像资料进行重新搭配;第二,使用ArcGIS软件对搭配好的影像资料进行进一步的加工,进而输出到平台上。

最后,遥感解释。在处理好航空影像之后,还需要将这些影像资料和地质灾害发生的区域实际情况进行对比比较,按照实际要求,对该地区发生的地质灾害进行详细的评价。其流程是航片预处理、分析资料、人机交互结合进行遥感图像初步解释、外业复核、详细解释修正初步解释成果和综合分析解释成果进而输出。

3 无人机在地灾中的优缺点

无人机在地质灾害中应用的优缺点主要从以下几方面分析:

第一,优点。无人机在地质灾害中的优点有几点:首先,无须驾驶员,机体小型化,飞机重量小,基本成本低;其次,全天候、全时段操作作业,适合危险作业,能够减小人员伤亡;然后,能够适应一些恶劣的飞行环境,只要遥控人员稳定,那么无人机的留空时间将不会受到多大的影响;最后,在维护方面,无人机的维护因为无人机的构造比较简单,所以维护成本低,训练成本也相对较低,操控员只需要学习相关的理论知识和应用知识便能顺利操控无人机。

第二,缺点。无人机在地质灾害中的缺点有几点:首先,无人机在飞行途中容易受到无线电和其他人员因素的干扰,一旦产生强烈的电磁干扰,那么无人机的飞行就会发生重大事故;其次,一旦需要测量数据较大或者传输数据受到干扰的时候,无人机的系统便会产生一定的延迟性,这将会拖延救援黄金时间。

4 目前应用实例

2015年5月,位于新疆克孜勒苏柯尔克孜自治州的公格尔九别峰北峰冰川发生了冰川滑坡地质灾害。对此,在得到相关方面方面的申报后,中国新疆生态研究所立即开展地质灾害调查工作,其中最主要的工作便是派遣无人机调查小组进驻冰山滑坡发生地点,东侧山谷进行航拍。此次航拍高度为3400米-7000米,航拍机型为国内较为常用的两款无人机,FREEBIRD和QC-1型号。无人机在进行6次飞行任务之后,顺利完成任务,测土总面积达到了18.2平方公里,图象分辨率提升到了20cm。

图2为冰川滑坡整体航拍效果图,图3和图4是东侧山谷畜舍和民居房屋受损航拍图。经过整理,受损房屋一共为149处,被地质灾害完全破坏的民屋有12处。受损房屋多数集中在冰川滑坡的左侧区域,从图2和图5中都可以看出,发生冰川滑坡灾害的区域主要在左侧冰川区域,冰川冰体受损严重,没有出现冰面湖的现象;较之左侧,冰川右侧冰体保存良好稳定。在经过高分一号卫星的相关数据结合后,新疆生态所对这一次冰川滑坡的原因进行了归纳:

主要原因是冰川滑坡灾害发生后,左侧冰川的下滑遇到了一些阻碍,中下部的高度开始快速提升,促使原本低于岸边房屋的冰川一下子超出了冰渍岸70米,由此引发了倾倒现象,冰块和石块的掉落促使岸边的一些民居房屋严重受损,除此之外,在隆起的冰川中下部位置形成水流冲击,再次造成了3次次生灾害,最后判定此次冰川滑坡为比较严重的地质灾害事件。

得到相关的分析后,新疆生态所立即对当地的生态系统进行了相关的调整,在相关地点构建监测系统,完善预警体系,切实有效地保障了人民的生命财产安全。

5 结论

近年来,随着我国科学技术的不断增长和革新,无人机技术也在发生日新月异的变化。在这种发展背景下,我国地质灾害中无人机的应用一定会越来越广泛,但是其中存在的一些问题例如:电磁干扰防御能力弱、特殊地质灾害飞行环境适应能力差等等都需要我国相关科技部门的注意和改善。我们可以相信,在未来的地质灾害救援中,无人机的扮演角色作用将会越来越重要。

【参考文献】

[1]王燕波,罗伟,李名勇,杜军,薛重生.基于高分辨率遥感影像的矿山开发监测研究[J].热带地理,2011(04).

[2]谢慧芬.遥感技术在地质灾害监测和治理中的应用[J].测绘与空间地理信息,2011(03).

无人机遥感技术范文第6篇

关键词:无人机 遥感 SWOT分析 农村居民点

中图分类号:F32文献标志码:A文章编号:1673-291X(2011)27-0043-02

一、研究区域及已有研究概况

(一)研究区域概况

1.黑龙江总体概况。黑龙江省位于中国东北边陲,总面积47.3万平方公里(含加格达奇、松岭两区),辖1个地区、12个地级市,共132个县区。全省地貌受新华夏系的控制,形成以大兴安岭、小兴安岭和东南部山地三大山系,松嫩、三江两大平原及其之间的丘陵漫岗过渡带为主体构成的格局。依据地貌形态特征,黑龙江省可分为5个区:即大兴安岭山地与丘陵区、小兴安岭山地与台地状丘陵区、东南部山区、松嫩平原区、三江平原区。

2.黑龙江省农村居民点特点。受自然条件及社会经济因素的综合影响,黑龙江省农村居民点的土地利用具有以下特点:一是居民点面积较小、分布较为分散;二是闲置地比例偏高,利用不够充分;三是内部结构不合理,功能分区混乱;四是公共设施不完善,建筑容积率低[1]。受这些特点的影响和限制,对黑龙江省农村居民点进行相关调查,采用高分辨率卫星影像或普通航摄影像的成本较高、工时较长、限制因素较多,因此有必要采用无人机遥感或其他相关低空遥感设备进行调查。

(二)已有研究概况

1.无人机遥感在国土系统的应用情况。无人机遥感(UAVRS)技术作为航空遥感手段,具有续航时间长、影像实时传输、高危地区探测、成本低、高分辨率、机动灵活等优点,是卫星遥感与有人机航空遥感的有力补充,在国外已得到广泛应用。目前无人机遥感在国土系统的主要应用方向有:国土资源调查、城镇规划调查、矿产资源开发调查、农业土地资源和农作物资源评估、地质灾害遥感等。受无人机成像原理、实际飞行情况等因素的限制,目前通过无人机所采集的低空数字航空摄影影像成图比例尺一般为1∶500、1∶1 000、1∶2 000。1∶500比例尺影像在平面、高程精度上均达不到地籍调查的基本要求,现阶段国内尚无应用于此方面的成功案例,因此1∶500比例尺的影像目前主要用于矿产资源开发调查、地质灾害遥感等方面。1∶1 000比例尺影像在平面精度上能满足国内土地调查及制图的基本要求,但高程精度尚不能符合相关标准,因此1∶1 000比例尺的影像主要应用于城镇规划调查、矿产资源开发调查、农业土地资源和农作物资源评估、地质灾害遥感等方面。1∶2 000比例尺影像在平面精度、高程精度上均能满足中国航测成图要求,也是目前应用于国土系统中最广泛的无人机遥感比例尺。主要用于防灾减灾的快速响应、遥感监测、执法检查、规划设计及土地开发整理中大比例尺地形图的获取。

2.黑龙江省无人机遥感的发展。黑龙江省无人机遥感的发展尚处于起步阶段。黑龙江省测绘局已购置飞行设备,正在试验飞行。哈尔滨工程大学自主设计的无人机可以按照飞行计划进行简单航摄。但目前黑龙江省不仅在国土领域,而且在无人机可应用的其他方向上,暂无成功案例。

二、SWOT分析法原理

SWOT分析法又称为态势分析法,它是由哈佛大学商学院的企业战略决策教授安德鲁斯(K.Andrens)在20世纪60年代提出来的[2],是一种广泛应用于企业战略分析的重要方法。SWOT分别代表:strengths(优势)、weaknesses(劣势)、opportunities(机会)、threats(威胁)。其中,S、W是内部因素,O、T是外部因素。SWOT是一种战略分析方法,通过对被分析对象的优势、劣势、机会和威胁等加以综合评估与分析得出结论,通过内部资源、外部环境有机结合来清晰地确定被分析对象的资源优势和缺陷,了解所面临的机会和挑战。

通过运用SWOT分析法,对无人机遥感在黑龙江省农村居民点调查中应用的内部因素(优势、劣势)、外部因素(机会、威胁)进行归纳,从而分析出进行农村居民点调查的基本策略。

三、无人机遥感在黑龙江省农村居民点调查中的SWOT分析

1.优势分析(Strengths)。省国土资源勘测规划院拟在无人机遥感领域有所创新,其主要研究方向是农村居民点调查。开展这一工作的主要优势有:(1)领导充分重视。这一创新得到了院有关领导的重视,并给予了适当的投入。(2)硬件优势。拥有市场上主流的机器、设备及软件,配置在黑龙江省居于前列。(3)科研优势。在黑龙江省国土资源系统扮演技术服务、技术支撑的重要角色。(4)经验优势。具有丰富的航摄影像处理及相关外业调查的经验。(5)人才优势。培养了一批“高、精、专、博”的技术人才。(6)区位优势。位于省会城市,交通便利,有利于进行外业飞行。(7)社会资源优势。黑龙江省第二次土地调查领导小组设在该院,与省内各地市建立了良好的关系,有利于组织、协调和沟通。

2.劣势分析(Weaknesses)。在无人机遥感的应用方面也存在一定的劣势,表现为:(1)前期所需投入较高。不考虑其他投入的情况下,仅影像处理软件inpho约100万左右。(2)立项资金申请存在困难。鉴于研究领域较新,对成果的价值估量存在风险,立项资金较难申请或可申请额度有限。(3)暂无专业设备。在缺乏专业软件的情况下,大量的工作需手工完成,人工成本巨大。(4)缺少专业经验。仅有无人机试验飞行、无人机影像试处理的经验,无正式成果制作经验。(5)缺少专门的培训。对无人机遥感应用的专业培训刚刚开展,专业人才匮乏。(6)航摄理论基础薄弱。以往只注重航摄影像的应用,对航摄的相关知识掌握较为基础。(7)部分优势存在短期性。硬件优势、人才优势、区位优势具有短期性,易被竞争对手超越。

3.机遇分析(Opportunities)。黑龙江省幅员辽阔、土地状况复杂、农村居民点分布零散,如何有效的进行农村居民点调查、及时掌握其土地利用变化情况、迅速进行相关决策,是国土资源管理面临的课题。因此开展无人机遥感进行农村居民点调查是黑龙江省国土事业发展的一项机遇,主要表现在:(1)国内已经制定了较为成熟的标准,如《无人机航摄安全作业基本要求》、《无人机航摄系统技术要求》、《低空数字航空摄影测量内业规范》、《低空数字航空摄影测量外业规范》、《低空数字航空摄影规范》等,为相关工作的开展提供了理论的可行性。(2)一些优秀企业的无人机生产、研发工作日趋成熟,如中测新图在低空数码遥感领域研制的飞行设备等,这些产品都满足1∶2 000比例尺的测图、防灾减灾、应急监测等任务。(3)国内外无人机影像处理软件的开发,为无人机影像的生产打下了良好的基础。如ERDAS LPS、DPGrid、Pixel Grid、inpho等。(4)无人机遥感技术在业界受到广泛关注和重视,低空数码遥感逐步成为遥感领域重要的研究方向之一。(5)黑龙江省尚无无人机遥感应用的成功案例,首创性工作一旦取得成功可迅速的占领相关市场,进而创造经济效益。(6)对农村居民点广泛的进行大比例尺影像的数据采集和调查尚属首创。(7)省内外多家软硬件经营、开发企业(单位)有参与并合作的意向。

4.威胁分析(Threats)。利用无人机遥感开展黑龙江省农村居民点调查的潜在威胁表现在以下几个方面:(1)现有无人机飞行技术、影像后处理技术虽然可以完成1∶500、1∶1000比例尺的正摄影像图,但成图精度无法保证符合第二次全国土地调查、土地变更调查、地籍调查等工作的相关要求。(2)存在无人飞艇、飞碟等替代产品,抢占无人机遥感在农村居民点调查的市场,且无人飞艇飞行的稳定性远胜于无人机,飞碟可在空中进行悬停以满足拍摄需要,无人飞艇和飞碟可以用来生产1∶500、1∶1000比例尺的影像。(3)存在潜在的竞争对手。(4)能否成为黑龙江省第一家、唯一一家采用无人机遥感进行农村居民点调查的作业队伍还未可知。(5)保证经费充足且持续存在一定难度。(6)尚未确定软件、硬件设备的合作/协作公司(单位)。(7)能否将这一调查方式在全省推广存在不确定性。(8)飞行受空中交通管制的严格控制。(9)现有的影像处理软件的应用方向各有侧重点,但同时也存在一定的缺陷。(10)前期的投入与后期创造的产值并不一定成正比。

四、无人机遥感在农村居民点调查中的应用策略

1.确立无人机遥感在农村居民点调查中应用的总体思路。以黑龙江省国土资源勘测规划院的现有优势为基础,以无人机遥感技术、影像处理技术发展的实际情况为前提,在黑龙江省开展以无人机为主要航摄工具的农村居民点调查,调查比例尺为1∶2 000为宜。 若需要进行1∶500或1∶1 000比例尺的农村居民点调查,建议采用无人飞艇、飞碟进行。

2.具体策略。(1)持续增加各项投入,保持优势继续领先。在软件、硬件、人员培训、科研等各方面,进行持续投入,所产生的间接效益可保证现有优势更加明显,从而有效规避潜在竞争对手的威胁。(2)加强产业互动融合,积极弥补现有劣势。对于现有劣势,可通过和相关企业,甚至是向竞争对手进行学习、合作,取长补短,积累相关工作经验、掌握必要知识的同时,寻求降低成本的有效手段。(3)把握利用现有机会,寻求创造其他机会。利用现有的软硬件设备,开展黑龙江省农村居民点1∶2 000比例尺的调查,尽快抢占黑龙江省相关市场。(4)有效规避已知威胁,扬长避短开展工作。现有无人机遥感技术所生产的1∶500、1∶1 000比例尺的影像,虽不适合农村居民点的地籍调查,但可以用来开展相关的灾害监测等工作。在相关工作的开展中要注重时效性和准确性。

参考文献:

无人机遥感技术范文第7篇

遥感(RS)是20世纪60年代以来发展起来的一门新兴边缘学科,其涉及现代物理学、空间科学、电子计算机技术、数学方法和地球科学理论等众多领域,是一门先进的、实用的探测技术[1]。遥感技术在林业规划设计调查、森林病虫害监测、森林火灾监测、林地变更调查及林地清收等工作中都得到了广泛应用。林学专业学生通过遥感课程的学习,可以了解遥感技术的基本原理及图像处理的一般方法,掌握遥感相关的概念、分类及应用。掌握遥感技术的应用技术理论、遥感图像处理一般方法,可以独立利用遥感图像处理软件对遥感图像进行几何校正、图像融合、图像增强及计算机分类等操作。从而为今后工作中,能够运用掌握的遥感知识处理和解决实际问题提供帮助[2]。本文结合北华大学林学院林学专业的实际情况,针对在遥感课程教学及实践过程中发现的问题,从教学内容、教学方法、结合实践教学三个方面进行了课程教学改革探索,希望这些改革措施能够为相关院校林学专业遥感课程的教学提供帮助。

1 遥感课程教学及学生学习方面存在的主要问题

对于林学专业来说,遥感课程还没有全国统编教材,各院校会根据自身实际情况,结合教学大纲的要求而选择自己的遥感教学教材,使得教材各不相同。教材内容更新速度较慢,而遥感技术发展是迅速的,势必导致教材内容与实践脱节。遥感课程作为林学专业的一门专业课,基础设施相对欠缺,教学过程中使用的遥感资料不能及时更新,时效性较差。

林学专业的学生在学习完必修课的基础上,会选修一些与自己专业相关或自己感兴趣的专业课,在开始学习遥感课程之前,学生对遥感知识几乎不了解,遥感技术在林业实际生产工作中有哪些应用,怎么应用,需要学习和掌握哪些知识更是一无所知,所以学习兴趣普遍不高。

2 教学内容方面改革措施

2.1 选用适合教材,合理修改教案内容

由于林学专业遥感课程没有统编教材,所以有必要根据本校自身情况,合理选择遥感教材,选用了《遥感概论》作为林学专业的遥感课程固定教材,该教材内容比较全面,涵盖了遥感基础理论、遥感图像获取、遥感图像处理及遥感技术应用等几个方面。但没有突出林学专业特点,也没有侧重林业应用内容。为此选择《林业遥感》作为参考教材,该教材较为全面系统地介绍了遥感技术的基本原理与应用方法,将遥感基础理论和林业实际应用相结合,突出了林业特点。书写教案时,在考虑课时的情况下,以《遥感概论》教材内容为框架,对内容进行适当删减,增加一些《林业遥感》教材中与林业相关的内容,从而做到与专业结合,丰富教学内容。

2.2 结合网络不断更新教学内容

目前,遥感类教材大多较为陈旧、更新较慢,而遥感技术的发展是十分迅速的,不同类型的传感器不断涌现,卫星图像的分辨率越来越高,无人机及无人机数据应用也愈加广泛。导致教材内容无法与日益更新的遥感技术发展相一致,与社会对于毕业生的要求相距甚远[3]。在实际教学过程中,有必要利用网络信息快速更新教学内容。例如,现在无人机在林业调查、监测及各项工程中的应用已经非常普遍,而教材中却没有关于无人机及数据的相关内容;教材中第六章航天遥感在介绍SPOT系列卫星时只提到了SPOT5,而SPOT7都已于2014年6月发射成功了。这些新的知识有必要通过网络查询,及时更新教材中没有涉及的新知识、新内容,弥补因教材更新较慢而遥感技术发展较快的矛盾与缺陷[4]。在教学过程中涉及到的遥感图像数据,最好选择学校周边、近期拍摄的图像,例如,利用谷歌地球,选择学校范围内的高分辨率图像进行遥感图像目视判读,这样学生进行目视判读的积极性会更高一些,也有利于判读精度的实地验证。

3 教学方法的改革措施

3.1 通过课堂提问,让学生主动学习

在教室上课的时候,前排的学生基本能够主动学习,而坐在最后几排的学生往往学习积极性不高。在实际教学的过程中,在提问题环节,改变以往提问前排学习好的学生问题的习惯。每次都是多次从后排反复提问,如果不认真听课就会影响学生的平时成绩。这样后排的学生慢慢的就主动坐在前排座位了,学生很自然的就会学到一些知识,整个班级对遥感课程的接收水平就提高了。

3.2 多媒体教学与实物教学相结合

现在教师基本上在上课的时候都会选择多媒体教学,多媒体教学是指在教学过程中,根据教学目标和教学对象的特点,以多种媒体信息作用于学生,形成合理的教学过程,达到最优化的教学效果[5]。虽然多媒体教学比以往在黑板上书写板书的教学形式更为生动,充分利用图片等辅助教学,对教学效果的提高起到了一定作用。但多媒体教学毕竟还是利用二维空间。实物具有更形象、更直观的特点,如果能?蛟谔跫?允许的情况下,选择多媒体教学与实物教学相结合,这样更有利于学生接受和理解知识点。

3.3 增加课堂讨论,提高学生对知识点的理解和掌握

对于遥感课程中的一些知识点,改变以往教师讲,学生记的方式。而是采用分组讨论,让学生自己去分析、总结知识点,教师对讨论的结果进行点评。例如在讲完第五章航空遥感和第六章航天遥感后,让学生分组讨论,总结航空遥感和航天遥感的优缺点。这样在分析、讨论的过程中,学生对知识点的记忆会更深刻,从而便于学生掌握和理解遥感相关知识。

4 结合实践进行教学,适应林业工作对遥感知识的要求

4.1 加强与毕业生沟通,了解林业实际工作对遥感知识的要求

对于以往林学专业的毕业生,需要加强与其的沟通和联系。通过相互的交流,了解在实际林业工作中,需要掌握哪些遥感方面的知识。例如通过与吉林省林业勘察设计研究院等林业相关部门工作的毕业生交流,了解到在林地清收工作中需要工作人员掌握遥感图像配准方面的知识;在林业征占地项目中需要结合时效性和分辨率都较高的谷歌地球影像进行实际工作等。通过以上与毕业生的交流与调查,在教学过程中就可以结合以上项目进行遥感知识点的讲解,由于贴近生活与实践,学生也比较容易接受和掌握。

4.2 加强与相关院校及单位交流,了解学科前沿动?B

利用空余时间,多与相关院校及单位进行交流,了解遥感方面的前沿及动态信息。例如现在无人机技术及数据应用已经越来越普遍,所以利用暑假空余时间,去北京林业大学参观学习,与精准林业北京市重点实验室的成员一起进行外业无人机数据的获取,从而了解无人机外业操作过程及内业处理过程。同样利用假期时间联系相关单位,了解无人机及其数据的应用情况等。通过以上的交流与学习,将这些学科前沿方面的知识在平时授课过程中体现出来。由于是亲身经历的,有拍摄的照片及录制的相关视频,所以在讲解过程中,学生听起来也不至于枯燥、乏味。反而了解到了遥感知识应用的广泛性,遥感知识贴近生活,学习的主动性普遍得到提高。

无人机遥感技术范文第8篇

【关键词】无人机 遥感 关键技术

1 引言

遥感是以航空、航天摄影技术为基础,在20世纪60年代初发展起来的一门新兴技术[1]。经过几十年的发展,遥感技术已广泛应用于资源调查、环境监测、情报侦察等各个领域,是开展经济建设、维护国家安全不可或缺的技术手段。

遥感系统由平台、传感、接收、处理等系统组成[2],完成对探测对象电磁波辐射的收集、传输、校正、转换和理的全部过程,将物质与环境的电磁波特性转换成图像或数字形式。传统的遥感方式主要以卫星和大型固定翼飞机为承载平台,利用星载或机载传感器完成信息采集。受制于卫星回归周期、轨道高度、气象、以及空域管制等因素影响,传统的遥感方式缺乏机动快速的能力,很难满足常态化侦察和实时测绘的需求。

无人机是一种无人驾驶的航空器,经过近一个世纪的发展,已经形成了一个完整的体系。近年来,轻小型无人机成为热点,主要体现为重量越来越轻、体积越来越小,且结构上由固定翼转向旋翼,如大疆的四旋翼无人机,已在多个领域得到广泛应用。利用轻小型无人机进行遥感探测,具有成本低、实时性强、影像分辨率高、作业方式灵活等显著优点,可有效弥补传统遥感方式的不足,因而也是当前的研究热点。

本文以轻小型无人机遥感为背景,分析面临的主要问题,明确其关键技术,给出系统实现方案。

2 问题分析与研究现状

2.1 主要技术问题

轻小型无人机遥感尽管存在较大的优势,但受制于平台、载荷等因素,也存在着一定的局限性,主要体现在以下方面:

2.1.1 平台局限性

轻小型无人机由于自身质量较轻,受风的影响大[3],影像航向重叠度和旁向重叠度都不够规则,影像倾角过大,且倾斜方向没有规律,对地图测绘及目标识别而言,影像旋偏角大,影响测绘与识别的效率和精度。

2.1.2 飞行高度局限性

轻小型无人机通常飞行高度较低,由于相机焦距限制,容易造成单张影像像幅小、像对多,其数据处理的工作量将会有较大增加。

2.1.3 载荷局限性

轻小型无人机由于结构尺寸较小,其载荷的摄影基线较短,影响测绘成果的高程精度;且所搭载的相机多为非专业量测相机,存在较大畸变,所获取图像需要进行较为严格的前期矫正和后期处理。

由以上可看出,轻小型无人机遥感由于自身条件等原因存在一定局限性,而这种局限性最终体现在影像处理的复杂度进一步提高,虽然遥感影像的处理技术已大体成熟,但是基于无人机影像特点的处理方法还有待更深入的探究。

2.2 研究现状

围绕轻小型无人机遥感的主要问题,国内外学者们提出了很多方法。针对影像校正,传统方法有共线方程校正法和多项式校正法。刘异等人[4]提出了一种以分块方式提取图像中心区域特征点对图像进行几何校正的方法;徐秋辉[5]提出了一种基于POS参数的几何校正方法。针对无人机影像拼接,目前研究的主流是基于特征匹配的图像拼接方法。D.G.Lowe[6]提出了SIFT算法,具有较强匹配性和良好的鲁棒性,但算法复杂度高;陈信华将SIFT算法与最小二乘法结合,实现影像的匹配与拼接。针对影像融合,目前主流的方法有直接平均融合法、加权平均融合法等[7]。

3 关键技术

基于以上分析,我们提出轻小型无人机遥感的重点研究方向,如下所示:

3.1 航线规划

传统的航线规划采用外接矩形包含任务区域的方法进行航摄,效率较低且容易生成较多无效的影像数据。研究如何在不规则任务区域进行高效的航线规划,将有效降低后期处理的工作量。

3.2 影像校正

通常的几何校正需要在航摄区域布设一定数量的地面控制点,但在野外、灾害发生区域等很难得到实测控制点。研究无地面控制点辅助的情况下,如何实现精确的影像几何校正是一个必须关注的问题。

3.3 影像拼接

影像拼接的基本任务是将多幅小范围影像序列拼接成有价值的大幅面影像。SIFT特征匹配算法应用于无人机影像匹配具有精度高、鲁棒性好等优势,但运算量大,无法实现实时匹配。进一步研究兼顾精度和运算速度的算法仍有必要。

3.4 影像融合

轻小型无人机在获取影像时,由行姿态不稳定,以及影像存在光强和色彩差异,影像拼接线附近会有明显的边界痕迹和颜色差异,因此需要对拼接后的影像进行融合处理。传统的加权平均算法是根据固定的矩形重叠形状进行权值分配,但影像拼接后的重叠区域往往不规则,较难满足实际需求。

4 系统实现方案

轻小型无人机遥感系统的总体结构如图1所示。

轻小型无人机遥感系统由三部分构成,分别是控制系统、无人机遥感平台、影像处理系统,其功能如下:

4.1 控制系统

完成无人机航线规划和飞行控制,前者设定无人机的飞行路线,规划飞行任务;后者用行时的实时控制和交互操作。

4.2 无人机遥感平台

该平台是无人机遥感系统的传感器承载平台,由四旋翼无人机、相机、云台、GPS定位系统、以及数传系统等组成,完成对地连续垂直拍照任务,并将其相应位置及飞行状态数据实时回传。

4.3 影像处理系统

该系统对遥感影像进行处理,包括矫正、拼接、融合等。在此基础上,系统可面向具体应用进行扩展,如影像查询与浏览、地图测绘、农林普查、战场侦察、变化检测等。

系统的运行流程如图2所示。

在每次实施作业之前,需对探测区域进行分析,确定飞行航线,然后将该航线注入到遥感飞行平台;遥感飞行平台在控制系统及GPS的协助下,按既定计划进行航摄,获取预定区域内的影像序列;当航摄任务结束后,将所获取的影像回传至影像处理系统,完成校正、拼接、融合等处理,并进行剖分存储。进一步的应用则需针对处理后的大幅影像进行像素和特征处理,从而发现有价值的目标信息。

参考文献

[1]Kemper G.New airborne sensors and platforms for solving specific tasks in remote sensing[C]//ISPRS Congress.Melbourne,Australia,2012.

[2]Li Deren,Sui Haigang,ShanJie. Discusion on Key Technologies of Geographic National Conditions Monitoring[J].Geomatics and Information Science of Wuhan University,2012,37(05):505-512.

[3]Lin Zongjian.UAV for Mapping-Low Altitude Photogrammetric Survey[J].ISPRS,2008:1183-1186.

[4]⒁欤李玉霞,童玲.无地面控制点的无人机遥感影像几何校正算法[J].测绘通报,2012(07):57-59.

[5]徐秋辉.无控制点的无人机遥感影像几何校正与拼接方法研究[D].南京:南京大学,2013.

[6]Lowe D G.Distinctive image features from scale-invariant key points[J].International Journal of Computer Vision(1):20,2004.

[7]程多祥.无人机移动测量数据处理[M].北京:测绘出版社,2015(09).

[8]周培德.计算几何-算法分析与设计(第3版)[M].北京:清华大学出版社,2008.

作者简介

陈敏(1969-),女,江西省南昌市人。博士。副教授。主要研究方向为计算机应用、图形图像处理。