首页 > 文章中心 > 半导体工艺与技术

半导体工艺与技术

开篇:润墨网以专业的文秘视角,为您筛选了八篇半导体工艺与技术范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

半导体工艺与技术范文第1篇

专注模拟晶圆代工,

扩充8英寸产能满足市场需求

“我们运营的8英寸生产线正处于快速上量的过程中,目前月产能已达3万片,预计在2012年达到6万片。”华润上华科技有限公司市场及销售副总温珍荻表示,“2010年,随着全球经济的逐步复苏,半导体行业也重新回到成长轨迹,未来两年内半导体市场的需求将保持适度增长。我们正积极扩充8英寸产能,推出特色工艺平台,以应对市场的强劲需求。”

1997年成立的华润上华在国内成功开创了纯开放式晶圆专工模式,目前资产总值已达到29.4亿元人民币,2009年实现销售额9.87亿元人民币。公司在无锡拥有中国内地规模最大的6英寸开放式晶圆代工生产线,并营运一条8英寸生产线,同时在北京、上海、香港、中国台湾以及美国等地设有办事处,是国内领先的模拟晶圆代工企业。

据温珍荻介绍,华润上华的6英寸生产线产能已逾10万片,主攻高压模拟工艺与新型电力电子器件工艺。随着日益增多的企业将电子和其他半导体合成产品的制造转入中国,中国在全球半导体市场的份额正逐年提高。紧抓市场机遇,在华润集团的资金支持下,华润上华运营的8英寸生产线于2009年6月正式投产。据温珍荻介绍,目前该生产线在不断提升产能的同时,良率和准时交付率也已达业界标准,主攻先进模拟工艺与逻辑工艺,已建立起完整的8英寸主流工艺平台,并可为客户提供完整的设计服务和IP平台。此外,该生产线已先后通过了ISO9001、ISO14001、OHSAS18001、ISO27001及TS1 6949等体系的认证,已具备为客户提供全方位服务的能力。目前,华润上华可为客户提供0.13微米以上的广泛的模拟与功率工艺技术,包括:BCD、HV CMOS、 Mixed Signal、 RF、 Embedded-NVM、 Logic、BiCMOS、DMOS、IGBT、Bipolar等。未来,华润上华的工艺技术还将提升至0.11微米。

携手国内IC设计业,

共同把握新兴应用市场机遇

经过十余年的发展,华润上华已拥有广泛的客户群,包含欧美日台的知名半导体公司,如富士通、德仪、意法半导体Fairchild、Freescale、ST、O2、IR等,更有多家排名中国大陆前十大的设计公司,如华润矽科、杭州士兰,同时与国内多家设计公司合作,开发更有竞争力的产品。

“深耕中国模拟市场是华润上华多年来始终坚持的方向。”温珍荻表示,华润上华创始人陈正宇博士在创建公司之初,便胸怀“以代工突破中国半导体业发展”的愿景,始终积极为国内IC设计公司提供生产平台,相互推动成长,以期带动国内集成电路产业整体快速发展。目前,华润上华的客户总数已有数百家,其中60%以上是国内客户。今后,华润上华将进一步携手国内IC设计业,挑战新兴应用市场,实现双方的增值与共赢。

据了解,针对中国蓬勃兴起的新兴模拟电路市场需求,华润上华不断开发新的工艺平台,近日了多款新型BCD和0.13微米工艺平台,为客户提供完备的、弹性灵活的、高性价比的解决方案。

华润上华致力于功率模拟IC代工,尤其在BCD代工方面拥有核心优势。其新近的三款新型BCD工艺平台分别向绿色节能产品的高电压、高效能及高集成度应用:(1)1.0微米700V BCD工艺平台是基于华润上华在AC-DC转换器上广泛应用的1.0微米40V BCD工艺平台上嵌入700V DMOS后研发而成的。它不但保持了原有工艺简单经济的优点,同时拓展了应用范围,是绿色电源芯片最佳选择之一,其主要应用于离线电源、LED照明驱动等AC-DC转换电路。(2)新开发的0.25微米BCD工艺平台,相较原有的0.5微米BCD工艺平台具有更高的性价比,其功率DMOS性能提升了30%,工艺流程更简化,使用成本更低。该工艺平台主要面向DC-DC转换器、AC-DC转换器、LED驱动、音频功放及电池保护等电源管理应用。(3)0.18微米BCD工艺平台是面向数字电源的普及需求的。该工艺平台将功率DMOS嵌入0.18微米数字平台中,保持了0.18微米数字工艺及0.25微米BCD工艺原有性能,同时提供完整的数字标准单元库、OTP等设计支持。

华润上华新近研发的0.13微米工艺平台,是基于原有0.18微米工艺平台研发而成的,包括0.13微米逻辑、模拟和射频工艺平台。与其0.18微米技术相比,芯片尺寸将最多缩小约50%的面积,性能提升逾50%。0.13微米逻辑工艺平台目前提供标准和低功耗2种工艺:标准工艺适用于性能导向的客户;低功耗工艺适用于手持消费性市场。0.13微米模拟和射频工艺平台技术将使基于逻辑平台的集成更为容易,主要提供的器件有:多种阈值电压的Core器件、3.3V IO 器件、隔离P阱、多晶高阻、可变电容器、MIM电容和顶层厚铝的电感器。0.13微米低压高性能逻辑工艺平台以及基于0.13微米逻辑工艺平台的嵌入记忆体工艺和高压工艺开发项目正在进行中。

此外,华润上华的0.13微米逻辑、模拟和射频工艺平台的模拟套件库(PDK)也将于近期完成。预计从2011年开始还将提供上述新工艺平台的多项目晶圆服务(MPW),以帮助客户降低生产成本。

“华润上华已形成了具有特色的模拟代工模式。我们拥有全系列的BCD工艺,覆盖了高电压、高密度与高性能等多种应用需求。在电源管理、半导体照明、射频应用、汽车电子、智能消费电子等领域,我们也可以提供多样化的工艺平台解决方案。”温珍荻介绍说,“在IC设计方面,华润上华还能够提供广泛的技术服务,包括类型丰富的PDK、Standard Cells、Library、模拟IP和数字IP,可满足主流工艺的不同设计平台需求,亦可根据客户的特殊需求量身定制。同时,我们还可提供特定用途的标准产品SoC和面向客户特定需求的ASIC的设计支持服务。华润上华正努力通过高效的产品导入、稳定的良率、充沛的产能和完善的管理体系,帮助客户尽快将产品成功推向市场。”

看好绿色环保趋势,

华润微电子聚焦节能产品与服务

华润上华隶属于华润集团旗下的华润微电子有限公司(股份代号:0597.HK),近几年,华润上华也得益于华润微电子“聚焦节能产品与服务”的战略,得到了来自集团的内部协同与支持。

华润微电子是在中国内地经营发展半导体业务的领先生产制造商。作为中国前五大半导体制造商之一,其业务包括开放式晶圆代工、集成电路设计、集成电路测试封装和分立器件制造四大板块。华润微电子及其旗下的华润上华、华润矽科、华润安盛及华润华晶等附属公司均为知名的微电子企业。华润微电子具有完整的产业链,并在主流消费电子市场以及蓬勃发展的节能及绿色照明市场持续投入研发,使华润微电子成为中国半导体行业中主要的模拟集成电路及分立器件供应商。而代工板块的华润上华是国内少数拥有丰富模拟工艺基础的晶圆专工公司,坚实的制造能力是企业进入绿色节能半导体市场重要的基石。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

近年来,环保节能已成为半导体应用市场成长的驱动力。国家提高新能耗标准政策的出台,使节能环保产品的需求增加,节能补贴的政策更提升了消费者节能产品购买欲,这都将快速提升电源管理半导体的需求,而电源管理将推动整个模拟IC市场在未来出现巨大的增长。以DC-DC、LDO、AC-DC、PFC、Regulator、MOSFET/IGBT为主流产品和具有高压功率模拟工艺(BCD、HVCMOS等)为主流工艺技术的微电子公司将呈现高成长性。

“我们相信,绿色环保不仅是趋势,更是进行式。中国环保意识的日渐增加使得节能及低碳排放产品的需求快速上升,华润微电子已抓住机遇,大力扩展节能环保的产品以及服务,提供电源管理、变频控制、LED控制、电仪表的IC设计、制造、封装测试服务以及分立器件产品等。”华润微电子有限公司首席执行官邓茂松先生表示。

华润微电子的绿色节能半导体产品主要为电源管理以及绿色照明。在2009年,电源管理以及绿色照明的产品以及服务占销售额的三成。“透过华润微电子旗下的产品公司提供DC-DC、 AC-DC、LED控制与电源管理IC,以及代工服务提供BCD、IGBT、RF等丰富的关键工艺服务,在未来,我们将提升绿色节能相关产品与服务至五成以上!”邓茂松表示,“延续去年成功开发了用于LED驱动及锂电池控制的集成电路,以及高压BCD制程技术,今年我们持续完善与若干机构合作开发商用微机电系统(MEMS)传感器制程技术。我们将持续地在重点细分市场上,形成特色产品与工艺技术,建立具有自主知识产权的工艺技术平台,整合价值链,巩固并提升华润微电子在节能半导体市场的优势。”

温珍荻则表示:“相信在华润微电子的大力支持下,华润上华能够在新兴模拟半导体市场中确立自己应有的地位。”

自2000年国务院颁布“18号文”至今已有十年,中国半导体产业在国家各项政策指导和各级政府支持下,已取得了明显的成就。根据CCID数据,中国IC设计业的规模从2000年的10.7亿元人民币快速增长到2009年的269.9亿元人民币,增长率达到2422%,同期IC设计公司的数量也经历了从20个到472个的高速发展。中国半导体产业的潜力不容忽视。

“中国占世界1/4的人口,市场容量巨大,对半导体的需求占全球1/3,已成为全球半导体市场重要的组成部分。而模拟工艺的特点是只有设计与工艺的密切完美结合,才能成就具有竞争力的产品,因此决定了华润上华必须把握中国战略性新兴应用半导体市场的发展契机,与中国设计业同呼吸共拼搏,共谋发展,同时也为中国集成电路的民族产业贡献一份绵薄之力。”温珍荻说。

半导体工艺与技术范文第2篇

半导体电子学问题复杂性的持续增加,以及类似微波电子学、光电子学这样的新方向发展说明了目前使用的掺杂工艺没有足够的潜力,而且寻求与开发新的方法是不可避免的。其中一种最有希望的技术是辐射掺杂,即在各种类型辐射的作用下,对半导体的性质有目的地定向改进。中性的粒子,例如中子和γ量子,它们在对半导体晶片和锭料的均匀掺杂中被广泛应用。利用辐射掺杂,非均匀掺杂剖面只能通过应用辐射来获得,它能确保半导体的性质在预定深度上的有效改进。从这一观点出发,最佳的方法是使用短距离的带电粒子,例如加速离子。因为在中止过程中它们能量损失的特殊情况,近年来为了这个目的使用最轻的离子,即质子受到了特殊的关注。过去的几十年中,许多重要工艺方法取得了长足的进步,而这些工艺方法都是在半导体与带电粒子的辐射掺杂过程中发生的。这一切拓展了有关辐射缺陷的产生,它们的性质以及它们与半导体中杂质交互作用的信息,并逐步形成了利用质子束辐射的新方法。现在,有关有选择半导体微观嬗变掺杂和半导体器件中辐射感生缺陷的述评论文在科学出版物中大量地出现。然而至今为止,在全世界相关的文献中还没有有关半导体技术中辐射缺陷工程的述评论文。在这本论文中,作者考察了质子与单晶半导体相互作用的基本原理,而且对现有已知材料的各种类型的质子改变作了详细的分析。

本书共有4章。1 离子激励工艺方法;2 借助带电粒子的半导体嬗变掺杂;3 利用辐射缺陷的半导体掺杂;4 隐埋多孔及损伤层的形成。

本书是世界科技出版社出版的《电子学和系统问题精选》丛书第37卷。本书的第一作者在圣彼得堡理工大学任教,第二作者在俄罗斯RAS俄罗斯科学院所属微电子学与高纯度材料研究所任职。本书引用的参考资料超过400种。对半导体电子学和固态辐射物理感兴趣的科学家、技术人员和学生将会从中受益。

胡光华,高级软件工程师

(原中国科学院物理学研究所)Hu Guanghua,Senior Software Engineer

半导体工艺与技术范文第3篇

利好2011

经历了2010的全行业强劲复苏之后,步入2011,半导体企业面对的又是―个全新的竞争格局。客观上讲,半导体技术的发展一直在追求更高性能、更低功耗和更小尺寸的道略上不断前行。在这样―个大前提下,半导体进入2011存在着诸多特定的利好因素。

首先,市场的需求依然旺盛。经历了2009年的减产之后,半导体库存已经基本清空,这客观造成了诸多半导体企业的2010年亮丽的业绩,截止到2010年底,半导体的供货周期依然比2008年之前长很多,库存始终处于较低的水平,这就必然推动2011年的半导体企业的业绩继续保持增长,虽然这个速度较2010年有明显的下滑,但基于一个更高的起点的增长,本身就是值得欣慰的事情。

其次,新工艺驾临。2011年,最先进的工艺节点将继续被推进,下半年,英特尔将推出22nm制程的量产芯片,TSMC也将提供28nm的量产代工业务,新工艺的量产无疑将半导体芯片的性能带人一个全新的高度,由此引发的连锁效应势必引发新的市场需求和技术革新。

再者,21世纪第一个十年。半导体经历了两次极为惊心动魄的起伏,这也是十年中半导体经历的仅有两次起伏。2010,半导体从理论上已经走出了经济危机带来的阴霾,对于每个半导体从业者而言,都希望重现世纪初的先悲后喜,一次剧烈的下滑之后换来的是六七年的高速增长,换来的是半导体产业近乎翻倍的成长。

最后,新技术和产品对半导体的需求在2011变得更为明显。一方面由于经济危机的出现,像3G这样的基础网络建设速度一度被放缓,2011年的3G网络建设和终端发展依然将是半导体发展的主要推动力,并且将贡献比2010年更大的市场价值。另一方面,iPad掀起的平板电脑热潮让本已平稳的PC市场重新火热起来,加上更多便携移动信息处理设备的兴起,半导体再一次充满了动力。

不仅传统两大市场再次复苏,电动汽车、新能源和医疗等市场正在不断快速成长,甚至大有取代两大传统应用成为引领半导体成长的主力的趋势。半导体的发展有个永恒的主题,就是更高性能、更小尺寸、更低功耗和更高的性价比。其中功耗,本就是衡量半导潍产品性能和竞争力一个重要的指标,随着哥本哈根气候会议之后全球将碳排放作为一项政府层面的任务指标之后,作为决定电子能耗的源头产业,节能降耗就从半导体的责任变成了义务,并且在强制指令下催生出旺盛的市场需求。因此,2011年半导体发展最重要的主题就是节能降牦及其相关的新能源应用,这无疑给了模拟和电源为主的厂商持久的市场需求。

转变2011

面对这些利好,半导体企业没有理由不期待2011年的增长,只是,经历过一次大的动荡之后,或多或少的半导体都会出现一些新的变化。 回顾2001年的科技股泡沫破灭引发的半导体产业剧烈动荡,造成的结果从现在看无外乎有两个:一是企业级需求逐渐被个人消费需求所超越,成为推动半导体发展的主力;另一个是半导体从IDM(独立设计制造)模式为主转变为无晶圆设计(Fabless)一代工(Foundry)的协作模式。当年正是因为对互联网膨胀速度的过于乐观估计,导致了科技股市的集中狂跌,从那之后,更多半导体企业开始着重致力于个人消费电子领域的拓展,促成了消费电子产品的快速增长。

这一次的动荡从宏观表象上与世纪初的类似,但背后的动因却大不相同。毕竟这次引发的是全球性的经济衰退,明显比多年前的只是电子与信息技术领域的崩盘不可同日而语。我们依然需要正视的问题是,如果把存储器这5年的发展轨迹评估一下,不难发现其实2007年初开始的存储器市场动荡是个很明确的暗示,只是,本应有的小幅动荡被更严酷的经济形势所放大,当然也被掩盖。

产业链的变化方面,历经了这次动荡,从业者发现采用Fabless模式更能在市场低迷期保持低成本甚至近乎零负担,加上工艺开发的成本已近天文数字,因此会有更多的半导体厂商从独立生产转向代工模式,产业链的细分程度将进一步深化。

半导体工艺与技术范文第4篇

A=Martin Anstice

云计算、物联网、人工智能,不断冒出的新技术让我们想象着一个不可预知的未来,而我们手中的移动终端也在往更轻薄、更低能耗以及更高性能的方向发展,但是要实现这一切都基于芯片的演进。让芯片变得更薄更轻、性能更强而能耗更低,要从芯片制造工艺本身来改进,现有的改进方法有芯片制造过程的缩减以及芯片架构的调整。不过无论哪种方式都对制造芯片的设备提出了更高的要求。在泛林集团(Lam Research)总裁兼首席执行官Martin Anstice看来,摩尔定律需要延续甚至突破,半导体行业才能持续发展。

C:全球半导体领域的技术发展呈现出怎样的趋势?

A:技术的发展基于整个半导体行业以及电子工业的发展,而半导体行业的发展又遵循于“摩尔定律”。要将“摩尔定律”延续下去,需要整个行业不断创新,以挖掘更多技术上的可能性。比如,现在业界比较关注的多重图形技术,就是把芯片的设计图曝光到晶圆上,然后我们再根据这个设计图来刻蚀晶圆。但由于现在器件越来越小,越来越精密,制造工艺都是在纳米级别下完成的,很多时候仅通过一次曝光很难达到需要的精度,必须通过多次曝光和刻蚀才能实现。此外,如今人们对电子产品性能的要求越来越高,这就意味着对半导体器件的性能提出更高的要求。如何在现有尺寸的器件上集成更多的功能,已成为我们必须解决的问题。目前,行业通过将器件的构架由二维向三维转变解决了这个难题,比如3D NAND技术,就是沿垂直方向来堆叠存储单元,从而有效提升器件的整体性能。其他的还有鳍式场效应晶体管(FinFET)技术、先进封装技术等。总而言之,未来的发展趋势主要聚焦于如何通过创新技术实现芯片尺寸的进一步缩减,这也将对半导体设备制造商带来很大的挑战。

C:设备制造商所在的行业面临什么挑战?

A:如今,随着物联网、云计算、互联网+等概念的应用和深入,以及电子产品与移动终端的普及和更新迭代速度的加快,市场对半导体产品的需求大大增加,同时也要求上游半导体器件设备制造商对市场的反应速度更快,经营方式更加灵活,业务体系更加全面。这是挑战之一。其次,消费者也希望手中的电子产品和移动终端变得更加轻薄、能耗更低,性能更高,但价格却更加优惠。这就要求这些设备中的半导体器件的尺寸进一步缩减,性能进一步提升。这样势必对半导体器件的制造工艺和设备制造商的创新能力提出更高的要求,尤其是在诸多技术已经进入拐点,行业迫切需要突破的时候。这是挑战之二。第三个挑战是如何培养,吸纳和留住尖端的技术人才。

C:你们怎么看待中国在半导体教育以及人才储备方面的状况?

A:总体来说半导体领域的人才还是比较短缺的。不仅中国如此,美国也是一样,甚至美国比中国还要严重。中国的半导体产业相对美国来说还比较新,但这里却拥有大量的发展机遇和潜力,比如这里既有诸如14纳米、16纳米以及3D NAND等行业最先进的技术,也有诸如物联网的很多成熟的技术。泛林和中国很多的高等院校合作,从教育体系入手,加快该领域人才的培养。

半导体工艺与技术范文第5篇

微波元件及其分类

在微波系统中,实现对微波信号的定向传输、衰减、隔离、滤波、相位控制、波形及极化变换、阻抗变换与调配等功能作用的,统称为微波元(器)件。简单地说,微波元件就是工作在微波频段的电磁元件。

在低频电子线路中,常用的无源元件很多,最常用到的是电阻、电容、电感、变压器等。同样,在微波电路中也广泛地使用电阻、电容、电感等无源元件。但是,由于频率的增高,低频电路中常用的这些元件已经不能运用于微波频段,而通过微波技术的研究与发展,如使用分布参数电路,利用传输线的不均匀性等办法即可实现微波频段的电感与电容。此外,构成一个具有一定功能的微波电路,还离不开诸如定向耦合器、功分器、阻抗匹配器、微波滤波器、衰减器、终端负载等几十种无源微波元件;此外,与低频电子线路一样,微波电子线路也包含有各种形式的微波有源器件,如放大器、混频器、微波开关、振荡器等。它们的各种组合能够完成对微波信号的一系列处理。

如果将微波元件按其工作原理和所用材料、工艺分类,又可分为微波电真空器件、微波半导体器件、微波集成电路和微波功率模块。微波电真空器件包括速调管、行波管、磁控管、返波管、回旋管、虚阴极振荡器等,利用电子在真空中运动及与电路相互作用产生振荡、放大、混频等各种功能。微波半导体器件包括微波晶体管和微波二极管,具有体积小、重量轻、耗电省等优点,但在高频、大功率情况下,不能完全取代电真空器件。微波集成电路是将具有微波功能的电路用半导体工艺制作在砷化镓或其他半导体材料芯片上,形成功能块,在固态相控阵雷达、电子对抗设备、导弹电子设备、微波通信系统和超高速计算机中,有着广阔的应用前景。微波功率模块是通过采用固态功率合成技术,将多个固态微波功率器件组合形成的器件,具有效率高、使用方便等优点,对雷达、通信、电子对抗等电子装备实现全固态化有重要意义。

微波半导体器件的发展历程

在实际微波系统中,各种形式的有源元件用于微波的产生、放大、倍频、变频等关键问题,微波固体电子学的发展成为这些有源元件发展的主要动力,在过去的几十年里,各种形式的微波半导体器件不断出现,推动了微波技术的发展。

20世纪50年代,出现了微波二极管,其工作频率可达100GHz,但工作效率较低。进入60年代后,微波半导体器件以硅双极微波晶体管为主,至今仍是微波低端半导体功率器件的一种选择。70年代中期,相关的研究转入电子迁移率更高的GaAs MOSFET器件,并形成了微波单片集成电路的集成化进步,同时进入到毫米波低端。80年代初,分子束外延(MBE)和金属有机化合物汽相淀积(MOCVD)等先进技术的发展,使得人们可以在原子尺度上发展半导体材料,超晶格和异质结由理论设想转化为实际物理结构,新型材料和新型器件层出不穷,如高电子迁移率晶体管(HEMT)、晶格HEMT(PHEMT)、异质结双极晶体管(HBT)等。从90年代开始,微波半导体器件呈现出两大趋势:一是硅基的集成电路由于工艺的发展形成了射频互补金属氧化物半导体器件(RF CMOS)和射频微机械电子系统(RF MEMS)的新的研究和应用,比如恩智浦半导体的BFU725F微波NPN晶体管,即采用的用于分立器件的硅锗碳(SiGeC)工艺技术,具有高开关频率、高增益和超低噪声等多重特点,另外是化合物半导体由于新材料的发展,形成了宽禁带半导体和窄禁带半导体器件的研究。现阶段,八、九十年展起来的微波半导体器件仍然是现如今的主要发展方向。

前不久,佐治亚理工大学的研究者采用碳60薄膜利用常温工艺成功制造出高性能场效应晶体管,在常温工艺下即可达2.7~5cm2/V/s的电子迁移率(见图1)。相信研发人员在利用有机材料制作晶体管的同时,会尝试利用新材料的形成来增加电子移动率的途径,以便得到更有效的微波半导体器件。

微波集成电路的发展历程

微波电路开始于40年代应用的立体微波电路,它是由波导传输线、波导元件、谐振腔和微波电子管组成的。随着微波固态器件的发展以及分布型传输线的出现,60年代初,出现了平面微波电路,它是由微带元件、集总元件、微波固态器件等无源微波器件和有源微波元件利用扩散、外延、沉积、蚀刻等制造技术,制作在一块半导体基片上的微波混合集成电路,即HMIC,属于第二代微波电路。与以波导和同轴线等组成的第一代微波电路相比较,它具有体积小、重量轻等优点,避免了复杂的机械加工,而且易与波导器件、铁氧体器件连接,可以适应当时迅速发展起来的小型微波固体器件。又由于其性能好、可靠性强、使用方便等优点,因此被用于各种微波整机,并且在提高军用电子系统的性能和小型化方面起了显著的作用,至今仍是一种灵活有效的电路形式。

70年代,GaAs材料制造工艺的成熟,对微波半导体技术的发展有着极为重要的影响。GaAs材料的电子迁移率比Si高七倍,而且漂移速度也比Si高得多,这种高频高速性能是由其材料特性决定的。又由于GaAs材料的半绝缘性(其电阻率可达105Ω/cm)可以不需要采用特殊的隔离技术而将平面传输线、所有无源元件和有源元件集成在同一块芯片上,更进一步地减小了微波电路的体积。

正是由于GaAs技术的问世与GaAs材料的特性而促成了由微波集成电路向单片微波集成电路(MMIC)的过渡。与第二代的微波混合电路HMIC相比较,MMIC的体积更小、寿命更长、可靠性高、噪声低、功耗小、工作的极限频率更高等优点,因此,受到广泛的重视。尽管如此,Si和GaAs一直是个激烈讨论的题目。两个主要的技术分歧点是微波晶体管的性能和半导体用作无源元件半绝缘基片时的损耗。如上文所述,GaAs的电子迁移率和漂移速度也比Si高得多,这使得GaAs在低耗无源电路的应用方面有很好的特性,但是在热导率方面,Si却远远超出GaAs。这些因素导致许多公司在过去的几年中大量投资于GaAs技术作为微波应用。然而,Si依然

是个强有力的竞争对手。实际上,随着微波无线产品巨大市场的出现,Si MMIC的发展得以强劲复苏。si和GaAs的争夺前沿是潜在商机十分可观的6GHz以下区域。较高频率应用中也已开始出现Si基微波IC,如Ku波段的DBS的卫星接收机之类。Si异质结双级晶体管技术正在为Si技术在更高频率的应用铺平道路。

目前,单片微波集成电路已经使用于各种微波系统中。在这些微波系统中的MMIC器件包括:MMIC功放、低噪声放大器(LNA)、混频器、上变频器、压控振荡器(VCO)、滤波器等直至MMIC前端和整个收发系统。单片电路的发展为微波系统在各个领域的应用提供了广阔的前景。由MMIC器件所组成的微波系统,已广泛应用于空间电子、雷达、卫星、公路交通、民航系统、电子对抗、通信系统等多种尖端科技中。表1列出了一些主流厂商最新MMIC产品,以供参考。

随着MMIC技术的进一步提高和多层集成电路工艺的进步,利用多层基片内实现几乎所有的无源器件和芯片互联网络的三维多层微波结构受到越来越多的重视。而且建立在多层互连基片上的MCM(Multi-Chip Module)技术将使微波/毫米波系统的尺寸变得更小。

此外随着人们对微电子机械系统(MEMS)技术的研究,利用MEMS技术可以使无线通信设备中的外接分立元件达到微型化,低功耗及可携带性的要求。MEMS采用深刻蚀技术,实现宏观机械上的三维结构,使以前的无源器件的小型化成为可能,同时将版图面积大幅度下降,另外更加容易集成,MEMS的器件主要是以Si作为加工材料,这就使它相对传统的利用MMIC技术制作的器件的成本大幅度下降。MEMS的这些特点也就决定了它向微小型化、多样性和微电子技术方向不断发展。因此,根据MEMS和MMIC技术特点,制成一种结合两种技术优点的器件或电路成为一种趋势。

趋势与展望

半导体工艺与技术范文第6篇

PDFSolutions公司近日在上海开办分公司,二十多位工程师将为中国的半导体业提供集成电路芯片良率提升的技术服务。PDFSolutions致力于帮助全球半导体厂商在各种先进工艺技术中提高芯片可制造性和良率,该公司总裁兼CEO John Kibman表示,“作为全球提高良率、可制造力技术和服务的领先者,PDF感到很荣幸能为中国的客户提供本地化快速服务,设立该分公司可以让中国半导体业借此机会了解我们为本地客户提供服务的承诺和决心。在初期阶段,上海分公司将成为PDFCV测试芯片数据分析中心。这一杰出的团队将以PDF十多年长期研究、开发的经验为基础,帮助集成电路制造商们加速良率和制造力的提升。”

PDF Solutions专注于工艺设计集成和IC制造服务,该公司始建于1991年,前身为美国Carnegie Mellon大学SEMATCH的快速良率学习研究中心。目前总部位于美国加州硅谷,约有300名员工,分布在美国、日本、德国、意大利和现在中国上海PDF各分公司。PDF Solutions能促使半导体厂商提供更完美的IC设计和制造工艺,从而提高制造的容易度。经由模拟深亚微米设计和工艺之间的相互影响,PDFSolutions能协助客户缩短产品上市时间,提升芯片良率和提高产品的可靠性。

PDF自主研究、开发了一整套用于提高可制造性的专利系统,包括经验建模、仿真及其他一系列相关专门技术。由我们专家、工程师们组成的咨询小组应用这一系统帮助我们的客户将芯片设计与工艺生产更加完善地结合起来(工艺一设计集成)。客户因此可以在更短的时间内更快地提升良率,缩短至量产时间及降低芯片的制造成本。目前半导体己经由亚微米向深亚微米技术过渡,在制造工艺由130hm、90nm发展到65nm甚至45nm时,如何提高良率已经变得越来越突出。产业权威人士认为,在90nm工艺时,设计流程对于制造环节的影响开始凸现,但进入65nm后问题更加突出,如何保证产品在设计流程中满足可制造性(Design-for-Manufacturing,DFM)的要求,需要EDA工具供应商和后端制造厂商和服务商的共同努力。为此,PDF Solutions与Cadence公司宣布达成合作意向,双方将在可制造性设计技术和产品领域进行合作,以提高IC制造能力、成品率和可靠性。

Cadence总裁兼首席执行官MikeFister介绍说:“随着工艺尺寸向65纳米及更低的几何级别发展,单靠设计或制造的过程,都无法达到更高的成品率和可靠性目标,作为IC设计和成品率提升领域的领导者,Cadence和PDFSolutions将会开发一个DFM架构蓝图,并合作提供强大解决方案,以使客户提升制造能力,并提高其最具挑战性IC产品的成品率和可靠性。”PDFSolutions总裁兼首席执行官JohnKibadan认为:“PDFSolutions已经利用其专有的Characterization Vehicle测试芯片基础架构中抽取的数据开发出多种成品率模型,并且这基础架构已被全球顶尖芯片及系统公司用于生产制造。我们相信PDFSolutions成品率模型与Cadence设计及验证解决方案的结合,将会让我们的客户能够策略性地管理和执行DFM及成品率提升计划,并贯穿于从IC设计到硅制造的全过程,为他们提供了极强的竞争优势。”

为了在有效控制成本的前提下提高可靠IC产品的成品率,在所有的设计阶段和制造流程中都必须无缝地考虑成品率的影响。PDF Solutions与Cadence计划推出一系列产品,以提高客户了解、管理和提高制造成品率的能力。

半导体工艺与技术范文第7篇

【关键字】半导体、风险、应急、预防

1半导体企业环境风险评估方法探索

半导体产品制造的过程中涉及氯气、砷化氢等有毒有害的化学品和多种酸碱类腐蚀品,存在着环境污染、健康危害等风险隐患,因此对半导体工厂生产运营进行风险评价显得尤为重要。风险评价常见的的方法有ETA(事件树分析)、FTA(故障树分析)、FMEA(故障模型与影响分析)等,本文将根据环境保护部办公厅新出台的《企业突发环境事件风险评估指南(试行)》(环办[2014]34号),以下简称《指南》,对半导体企业的环境风险进行分析,进而提出对半导体企业环境风险管控的建议,控制半导体企业所带来的环境风险。

1.1 半导体企业环境风险评估

通过矩阵法对企业突发环境事件风险(以下简称环境风险)等级进行划分。

1.1.1 环境风险物质数量与临界量比值(Q)

半导体企业在生产的过程中会用到许多的气体化学品作为制程或者辅助制程使用。半导体企业所涉及的环境风险物质主要包括:生产原料、燃料、“三废”污染物、辅助生产原料,目前主流产品为经过简单电路测试的8英寸或12英寸晶圆,在此过程中没有中间产品及副产品。

因此半导体企业在计算环境风险物质数量与临界值比值时,主要计算危险类原辅材料在厂区内的最大储存量加上在线量与相对应的物质的临界量的比值,一般半导体企业所使用的原辅材料中,涉及《指南》附录B所列突发环境事件风险物质清单的主要为: 氯气、氢气、磷化氢、氨、丙酮、硅烷、异丙醇、磷酸、硝酸、氟化氢等,这些原物料多通过气体钢瓶或者化学品桶方式储存,但是一般均为一用一备,储存量不大,因此,一般半导体企业的Q值计算为

1.1.2 生产工艺与环境风险控制水平(M)

根据《指南》要求,M的确定方法为采用评分法对企业生产工艺、安全生产控制、环境风险防控措施、环评及批复落实情况、废水排放去向等指标进行评估汇总,确定企业生产工艺与环境风险控制水平。因此,对半导体企业的分析得到的评估指标及分值估分为27分。

由此也可得出半导体生产企业的工艺与环境风险控制水平值(M)的风险控制水平处于《指南》中所列的M2(25≤M

(1) 生产工艺

半导体工厂在生产工艺方面会用到许多易燃易爆的化学品,如IPA,丙酮等,以及输送这些化学品的压力管道,以及在辅助设施所用到的天然气管道、压缩空气等。因此,工艺部分分值得分主要集中在“其他高温或高压、涉及易燃易爆等物质的工艺过程”,扣分值为20分。

(2) 安全生产管理

半导体生产大多为2000年后建立起来,其在建厂初期关于安全评价等做的还是较为正规,从起初的安全预评价到验收评价以及目前正在推行的现状评价,以及作为高资产保护的企业,消防方面的验收也均按照要求完成;另外,目前大部分半导体企业已经完成安全生产标准化(二级),因此,对于安全控制方面,半导体企业一般均能达成《指南》中所罗列的要求,因此安全生产管理并未有扣分分值。

(3) 环境风险防范控制与应急措施

半导体企业在截流措施、事故排水收集措施、清净下水系统防控措施、事故排水收集措施、雨排水系统防控措施、生产废水处理系统防控措施、毒性气体泄漏紧急处置装置、毒性气体泄漏监控预警措施以及环评及批复的其他风险防控措施落实情况等能按照《指南》中要求进行,因此此部分也未有扣分项。

(4) 雨排水、清净下水、生产废水排放去向

半导体企业一般处于工业区,企业雨排水、清净下水、生产废水排放去向去向一般为“进入城市污水处理厂或工业废水集中处理厂(如工业园区的废水处理厂)”,因此,此处扣分分值为7分。

1.1.3 环境风险敏感性(E)

半导体企业大多都位于工业园区或经济技术开发区内,如中芯国际上海有限公司、华虹宏力位于张江高科技产业园区、上海新进位于漕河泾技术开发区等,但也有些受限于工业区本身所处的位置有特殊性,因此不可避免有出现企业雨水排口、清净下水排口、污水排口下游10公里范围内有有一些环境风险受体,因此,可以将半导体厂的环境风险受体主要划分为类型1(E1)及类型3(E3)两大类。

1.2 半导体企业风险等级划分及风险级别表征

根据以上对半导体生产企业Q、M、E的分析可以得出,半导体企业风险控制在Q

表2 半导体企业环境分线分级表

2 半导体企业环境风险控制及预防方法

2.1半导体企业环境风险防范措施

从前面的分析可以得知,半导体企业主要的风险源为品种繁多的化学品,以及受规划选址的客观因素,不可避免有出现企业雨水排口、清净下水排口、污水排口下游10公里范围内有有一些环境风险受体,乡镇及以上城镇饮用水水源(地表水或地下水)保护区;自来水厂取水口等,因此本文将着重从化学品风险管理及敏感位置的环境风险防范入手,提出环境风险防范措施。

(1)厂区平面布置及建筑安全防范措施

目前一般企业均处于工业区,但是也会有周边分布敏感目标的情况,因此厂区设计总平面布置图时,应严格按照设计规范要求,对于不同因化学品带来的火灾危险性类别的防火间距要求设置项目各生产装置及仓库的各类设备、建构筑物之间的防火间距。厂区的消防车道按照《建筑设计防火规范》的要求设置。化学品仓库,各类物品根据不同属性、进行相容性分析后分区、少量储存。

在建筑安全方面,项目各类建构筑物和设备均按照规范对于相应火灾危险性等级的要求设置相应的耐火等级,对于存在爆炸危险的生产或储存场所,相应的建构筑物和设备应符合有关防爆要求,包括泄压、防静电、防火花等要求;在环境污染防治方面,储存化学品的仓库地面需进行防腐防渗处理,铺设环氧地坪,防止污水影响地下水及土壤。

(2)化学品运输风险防范措施

所有化学品运输均应委托有资质的运输公司运输,配备道路运输企业专用车辆,并配置车载卫星定位系统,以及安全防护、环境保护和消防等设施、设备;同一车辆不运输互为禁忌的物料,装卸、搬运化学危险品严禁碰、撞、击、拖拉、倾倒和滚动;向外省市购买易燃易爆、强腐蚀性化学品时,提前24小时向公安部门或者海事部门申报危险化学品品名和数量、运输起讫地、运输路线和时间等情况;按照地区公安部门确定的危险化学品运输车辆能够通行的区域、道路和时间运输。

(3)危险化学品储存风险防范措施

化学危险品的储存需要严格按照《危险化学品安全管理条例》和《常用化学危险品贮存通则》(GB15603-1995)的规定设计,不同特性的化学品物质独立房间,分类存放,其中气体化学品宜采用中央供应系统,气体钢瓶和化学品储存于独立的化学品储存仓库,并通过提高缩短储存周期减少危害物品的储存量;对各类易燃易爆有毒物质严格控制最大贮存量;每个房间都设置漏液收集槽,可以通过泵抽到废水处理系统中,避免化学品泄漏时溢出到其他区域;在气体房及气体供应(储存)柜内安装危险化学品侦测及报警装置,当泄漏浓度超过限值,会自动报警,切断气源,并自动启动水喷淋及排风装置,泄漏物料经过洗涤塔处理后,经由废气排气筒集中排放。

(4)生产操作风险防范措施

根据杜邦公司事故主因结构理论,经杜邦公司统计,绝大多数生产过程中即人员的意外、伤害及事故都是由不安全行为造成的,而非设备或环境引起。96%的事故是由人的不安全行为引起的,因此,对于人员意识的提升及技能的培训尤为重要。应对新职工进厂或更换工种前,需进行安全教育和安全技术教育,经考核后上岗操作;对老员工定期进行安全生产操作规程和各项安全生产的规章制度的培训,强化安全意识;操作前员工按规定穿好防护用品,上班前不喝酒,不做可能对本职工作造成影响的事;上岗前对本岗的机械、电气等设备及压力表、温度计等各种仪表仪器进行检查,如有问题必须及时汇报,做好记录;按照整理整顿要求,做好生产区域6S,对各种消防器材禁止随便动用,存放地点周围不堆放任何东西物品;严格执行交接班制度和设备保养工作,下班前对本岗位的电源等各种设备进行检查,如有异常情况,交班时向接班人员交代清楚,防止事故的发生。

(5)风险管理防范措施

加强施工监督,确保建设项目基础设施和设备(如管道、阀门等)达到设计规范和质量要求;在项目开工前对操作人员进行岗位培训;建立分级责任管理、巡检制度;在公司最高管理者和当地的政府机构(包括环保局和消防部门)的监督下,建立和运行健康/安全/环境管理系统;制定完整可靠的检修方案,定期对废气和废水管道及设备进行检查和维护,防止有毒有害物质泄漏;将化学品的有关安全卫生资料向职工公开,教育职工识别安全标签,了解安全技术说明书,掌握必要的应急处理方法和自救措施,定期或不定期对职工进行工作场所危险化学品使用安全培训。

(6)环境敏感受体的特殊风险防范措施

如厂区处于水源保护区或者周围有其他环境敏感点,厂区地面冲洗水集中收集经处理后排入市政管网,禁止随地漫流或进入雨水管道;对雨水管网安装截止阀, 当火灾发生时,将立即关闭雨水口截止阀,堵住雨水口,将消防废水用潜污泵从雨水排口蓄水池打入废水缓冲槽,经处理后排入市政管网;集水池、一般工业废物堆放点和危险废物堆放点均应按照相关标准要求进行防渗处理。

2.2半导体企业环境风险事故应急预案

半导体企业应在鉴别环境风险源的基础上应制订相应的应急计划,使各部门在事故发生后能有步骤、 有秩序地采取各项应急救援措施。根据不同的事故风险,制定不同类型的事故应预案。一旦异常情况发生,应根据具体情况采取应急措施,切断泄漏源、火源,控制事故扩大,同时通知中控室、健康中心等,根据事故分级启动相应的应急预案并根据法规,立即上报相关主管部门或客户,就近调拨到专业救援队伍协助处理;事故发生后应立即通知当地环境保护局、自来水公司等市政部门,协同事故救援与监控。

发生泄漏事故时,应采取以下应急措施:(1) 迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。(2) 切断火源或者按下紧急停止按钮停止供应源。(3) 紧急应变成员穿戴个人防护用具。(4) 用应急救援泵转移至槽车或专用收集器内,回收或运至废水处理系统或者废弃物处理厂商处处理。(5) 对皮肤接触人员应脱去被污染的衣着,用六氟灵、敌腐灵、肥皂水或者清水彻底冲洗皮肤;眼睛接触人员应提起眼睑,用流动清水或生理盐水冲洗,就医;吸入人员迅速脱离现场至空气新鲜处,保持呼吸道通畅。

2.3半导体企业环境风险事故区域应急联动

半导体企业多处于工业区,一旦发生事故,若超出本单位处理能力,应及时和当地有关事故应急救援部门及时联系,请求当地社会(地区应急联动中心和工业区应急联动中心)救援中心或人防办组织救援。企业在编制的环境风险应急预案中应确定通知外部单位救援的节点及联络电话,企业的应急预案应该和园区或工业区的应急预案相衔接;同时,在平时应急演练时,也可邀请相关如环保、管委会、安监、消防莅临指导,或者能和消防队等展开消企联合演练,则更能从根本上提高企业与区域的联合应急能力,尽可能善用园区/工业区的各项应急资源。

由此可知,半导体企业的风险主要存在于种类繁多的危险化学品以及火灾隐患,对危险化学品的运输、储存、操作环节加以工程控制,并按照国际认证标准做好防火管控,并且制定火灾、化学品或者气体应急预案,并且定期对人员进行培训及演练,同时与区域应急联动中心或工业区应急联动中心密切配合,才能将环境风险降到最低,促进半导体企业良性有序发展。

参考文献:

【1】 林玉锁.对我国开展环境风险评价的一些看法[J】.环境导报,1993(1):14・15

【2】 李冰.区域环境风险评价与应急预案编制方法探讨【J】.江苏环境科技,2006(S1):37_4l

半导体工艺与技术范文第8篇

【关键词】电子封装;课程设置;实习基地;实验平台

随着电子技术的迅速发展,越来越多的电子器件应用到许多领域中,也带动了相关行业的飞速发展。尤其是随着物联网技术的进步,各式各样的传感器构成了智能网络的基础。封装技术作为电子产品领域中的关键技术之一,具有举足轻重的作用。电子封装是将利用半导体加工方法制备出的微元件、电路等用特定的封装材料保护起来,形成机械保护并进行电学信号传输,从而构成微系统及工作环境的制造技术。由于电子封装专业在半导体制程中属于后道工序,其前道和半导体制备芯片相关联,后道和器件的使用息息相关,所以其涵盖的内容非常多,牵涉到材料、化学、电子、机械等学科,尤其许多新型传感器的出现,对电子封装专业提出了更高的要求。近些年来,电子封装对器件的可靠性评价、性能测试等领域也开始有所扩展和延伸。作为一门较新的专业,电子封装专业建设和本科生培养处于探索性阶段。目前国内高校的电子封装专业大多起源于材料学院,尤以焊接技术、金属材料专业居多。如哈尔滨工业大学、上海交通大学、南京航空航天大学等。但是电子封装专业作为一门全新的学科和专业,在信息技术飞速发展的今天,其本科生教育培养模式需要与时俱进,才能够跟上当今时代的发展。江苏科技大学电子与封装专业借鉴了国内其他高校在电子封装专业方面的建设,同时根据自身的特点,结合长三角地区半导体行业蓬勃发展的优势,对电子封装专业本科生培养及专业建设进行一些有益的探索。因此,本文从电子封装专业的多学科交叉及工程化应用较强等方面的特点出发,通过课程设置、实习基地建设和实验平台搭建,从封装专业的理论学习,到实际专业封装生产线的感性认知,再到封装设备的实践操作,构建电子封装专业的本科教学理论-认知-实践的系统性模式。

一、课程设置

由于电子封装专业是一门典型的交叉学科,牵涉到的基础学科较多,因此在课程设置方面既要考虑到其知识专业性,又要考虑到其知识综合性。江苏科技大学立足于长三角区域,针对目前电子封装技术专业存在较大的人才供需矛盾(据统计我国每年对电子封装专业本科层次的人才需求超过7万人),以半导体材料和器件制备为基础,结合电子元器件的设计与模拟,对电子元件的封装材料、封装工艺、封装设计等方面进行基础教育,培养电子封装及其相关领域中工艺开发、材料改进、仪器研制等方面的专业工程技术人员。在专业课设置上,涵盖从器件的原理、封装的工艺和可靠性测试方面等,具体有以下7门专业必修课。半导体器件物理、微连接原理、电子封装材料、封装结构与工艺、电子封装可靠性、封装热管理。在选修课程的设置上重视电子封装专业中的基础理论、实际应用、动手能力、思维开拓方面的培养,对目前迅速发展的封装领域中的知识进行了综合性的构建,从理论到实际,从工艺到应用,设置了10门专业选修课,包括微加工工艺、MEMS器件与封装技术、电子设计自动化、集成电路设计、微电子制造及封装设备、表面组装技术、微波与射频电路、电磁兼容技术、先进封装技术、有限元技术及在封装中的应用。江苏科技大学电子封装专业的课程体系设置,一方面体现了电子封装专业的综合化、专业化的特点,另一方面突出了实践性和理论性结合的特色。尤其在现代化的教育体系下,既要突出学生的专业性特点,又要兼顾学生的知识综合性,同时还需对目前学生的动手能力和实践能力进行专业化培养。尤其对于半导体及信息技术专业方面日新月异的发展,开设了“先进封装技术”课程,对目前晶圆级封装、三维封装等目前较为新颖的封装模式进行关注,及时反映封装领域的最新动态。

二、实习基地

电子封装专业不仅对理论知识有深入的了解,对实践能力也有更高的要求。尤其是电子信息工业的迅速发展,对人才掌握的知识综合性要求越来越高。目前,电子封装专业不仅仅是对其本身所涉及的封装设计、封装工艺、封装材料等方面,而且随着封装工业方面的发展,尤其是晶圆级封装技术的发展,很多封装工艺和微加工工艺高度融合在一起。所以对于从事电子封装领域的工程技术人员、研究人员,不仅要掌握封装相关的理论基础,还要求对加工工艺实践的掌握。从工科院校的人才培养角度出发,目前国际教育界公认实践才是工科专业教育的根本,必须在理论教育的基础上,让学生到相关专业工程实践中去实践学习,在实际解决问题的过程中掌握相关的专业知识。江苏科技大学目前积极建立与电子封装企业的合作,通过到企业的见习与实践,让学生对课堂讲授的基础知识有更深层次的认识,同时通过企业技术人员直接参与实践教学环节,加深学生对封装领域中的工艺、设备等方面的认知。并且,江苏科技大学与江阴长电、苏州捷研芯、苏州纳米城等单位建立长期稳定的实训和见习基地,采取与这些企业单位实际生产接轨的流水线式实习安排,在实习期间让每个学生负责生产制造过程中某一项工序,并定期进行轮换工作,如前道工艺中的光刻、溅射、刻蚀等微加工工艺,同时对后续的封装工艺如切片、邦定、贴装和封装等具体工艺的实训,保证学生在学校学习理论知识的同时,也能掌握一定的实际封装方面的技能。江苏科技大学地处长三角地区,长三角地区(上海、江苏、浙江)以上海为核心,半导体及信息产业在长三角地区中占有重要地位,是国内集成电路、传感器制造和封测技术最先进产能集中地区。其中,中芯国际在上海拥有8吋及12吋晶圆厂;台积电在上海松江拥有8吋厂,并已决定在南京兴建12吋厂;联电则以收购方式取得苏州和舰8吋厂经营权;力晶与合肥市政府合资兴建12吋厂。学校与相关的企业联合建立实习、实训和见习基地,一方面可以使理论教学与实践相结合,提高学生的知识实际应用能力;另一方面,可以让企业的一些研发型设备可以充分利用,实习资源共享,提高设备的利用率。此外,通过学生在企业中的实习,让学生掌握更多实践知识的同时,也让企业在学生实习期间考察他们的能力,为企业在未来招聘人才提供更多的选择。

三、实验平台

江苏科技大学电子封装专业针对目前国内半导体及信息产业的迅速发展情况,为了能较好较快地培养电子封装领域比较紧缺的人才,在理论教学的同时,也非常注重实验教学。目前电子封装系在新校区规划了用于实验教学的净化间,主要包括两个部分:一是包括黄光区内的光刻、显影、溅射等半导体器件的前道加工工序;二是包括划片、邦定、回流、键合等封装工艺。前道工序主要包括光刻机、溅射设备和刻蚀设备等,通过实验教学,使学生在操作过程中更能深入了解光刻、溅射等工艺的具体原理和实现步骤,能让学生更好地了解电子器件的制备过程,从而拓宽学生的视野,为学生走向工作岗位奠定良好的理论和实验基础。后道工序主要指封装工艺,设备主要涵盖划片机、金线键合机、金属植球机和回流炉等。通过这些设备的实际操作,可以使学生对封装领域中的零级封装、一级封装有比较深入的认识,可以根据设备的相应功能实现所设计的需求。同时,江苏科技大学根据目前封装领域的高速发展趋势,购置了包括3D打印机、晶圆键合机等较为新型的设备,通过这些设备的具体操作和实际应用,让学生在关注目前封装领域中发展的主要趋势,尤其是目前业界比较关注的晶圆级封装和三维封装,做好这些方面的知识储备,为以后走向工作岗位或者深造奠定良好的基础。

四、结语

电子封装专业作为一个新兴的交叉型专业,近些年来在国内外都有迅速的发展。尤其随着消费电子、汽车电子和物联网等领域的高速增长,作为电子器件中关键技术之一的电子封装技术备受关注,而且专业的电子封装领域人才培养还滞后于封装技术的发展需求。因此,高校的电子封装专业人才培养需要满足市场发展的需求,不仅要关注电子封装专业的多学科交叉及工程化应用较强等方面的特点,而且在教学过程中需要多元化的课程设置,包括器件设计、加工工艺、应用材料、测试方法等方面的理论教学,结合实习基地的实际参观认识和学习,到实验平台整体流程的操作,培养学生的综合性能力,能为电子封装专业输送更多更好的专业人才.

【参考文献】

[1]胡庆贤,董再胜,王凤江等.电子封装技术专业人才培养体系的构建[J].产业与科技论坛,2011,11(10):173~174

[2]简刚,汪蕾,胡庆贤等.微电子封装专业《薄膜材料与工艺》教学探索[J].产业与科技论坛,2014,14(13):154~155

[3]廖秋慧,刘淑梅.微电子封装专业的课程建设与教学实践[J].产业与科技论坛,2013,10(12):178~179