开篇:润墨网以专业的文秘视角,为您筛选了八篇核酸的化学本质范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
知识是青年人的最佳的荣誉,老年人最大的慰藉,穷人最宝贵的财产,富人最珍贵的装饰品。下面小编给大家分享一些生物高中必修一知识,希望能够帮助大家,欢迎阅读!
生物高中必修一知识1第一节 从生物圈到细胞
一、相关概念
细胞:是生物体结构和功能的基本单位。除了病毒以外,所有生物都是由细胞构成的。细胞是地球上最基本的生命系统。
生命系统的结构层次:细胞组织器官系统(植物没有系统)个体种群群落生态系统生物圈
二、病毒的相关知识
1、病毒(Virus)是一类没有细胞结构的生物体。
主要特征:
①个体微小,一般在10~30nm之间,大多数必须用电子显微镜才能看见;
②仅具有一种类型的核酸,DNA或RNA,没有含两种核酸的病毒;
③专营细胞内寄生生活;
④结构简单,一般由核酸(DNA或RNA)和蛋白质外壳所构成。
2、根据寄生的宿主不同,病毒可分为动物病毒、植物病毒和细菌病毒(即噬菌体)三大类。
根据病毒所含核酸种类的不同分为DNA病毒和RNA病毒。
3、常见的病毒有:人类流感病毒(引起流行性感冒)、SARS病毒、人类免疫缺陷病毒(HIV)[引起艾滋病(AIDS)]、禽流感病毒、乙肝病毒、人类天花病毒、狂犬病毒、烟草花叶病毒等。
第二节 细胞的多样性和统一性
一、细胞种类:
根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞。
二、原核细胞和真核细胞的比较:
1、原核细胞:细胞较小,无核膜、无核仁,没有成形的细胞核;遗传物质(一个环状DNA分子)集中的区域称为拟核;没有染色体,DNA不与蛋白质结合;细胞器只有核糖体;有细胞壁,成分与真核细胞不同.
2、真核细胞:细胞较大,有核膜、有核仁、有真正的细胞核;
有一定数目的染色体(DNA与蛋白质结合而成);一般有多种细胞器。
3、原核生物:由原核细胞构成的生物。
如:蓝藻、细菌(如硝化细菌、乳酸菌、大肠杆菌、肺炎双球菌)、放线菌、支原体等都属于原核生物。
4、真核生物:由真核细胞构成的生物。
如动物(草履虫、变形虫)、植物、真菌(酵母菌、霉菌、粘菌)等。
三、细胞学说的建立:
1、1665
英国人虎克(RobertHooke)用自己设计与制造的显微镜(放大倍数为40-140倍)观察了软木的薄片,第一次描述了植物细胞的构造,并首次用拉丁文cella(小室)这个词来对细胞命名。
2、1680
荷兰人列文虎克(A.vanLeeuwenhoek),首次观察到活细胞,观察过原生动物、人类、鲑鱼的红细胞、牙垢中的细菌等。
3、19世纪30年代德国人施莱登(Matthias
Jacob Schleiden)、施旺(TheodarSchwann)提出:一切植物、动物都是由细胞组成的。细胞是一切动植物的基本单位。这一学说即“细胞学说(CellTheory)”,它揭示了生物体结构的统一性.
生物高中必修一知识2第一节 细胞中的元素和化合物
1、生物界与非生物界具有统一性:组成细胞的化学元素在非生物界都可以找到
2、生物界与非生物界存在差异性:组成生物体的化学元素在细胞内的含量与在非生物界中的含量明显不同
3、组成生物体的化学元素有20多种
4、在活细胞中含量最多的化合物是水(85%-90%);含量最多的有机物是蛋白质(7%-
10%);占细胞鲜重比例最大的化学元素是O、占细胞干重比例最大的化学元素是C.
第二节 生命活动的主要承担者——蛋白质
一、相关概念:
1、氨基酸:蛋白质的基本组成单位,组成蛋白质的氨基酸约有20种。
2、脱水缩合:一个氨基酸分子的氨基(—NH2)与另一个氨基酸分子的羧基(—COOH)相连接,同时失去一分子水。
3、肽键:肽链中连接两个氨基酸分子的化学键(—NH—CO—).
4、二肽:由两个氨基酸分子缩合而成的化合物,只含有一个肽键。
5、多肽:由三个或三个以上的氨基酸分子缩合而成的链状结构。
6、肽链:多肽通常呈链状结构,叫肽链。
二、氨基酸分子通式:
NH2—(R — C H —COOH)
三、氨基酸结构的特点:
每种氨基酸分子至少含有一个氨基(—NH2)和一个羧基(—COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上(如:有—NH2和—COOH但不是连在同一个碳原子上不叫氨基酸);R基的不同导致氨基酸的种类不同。
四、蛋白质多样性的原因:
组成蛋白质的氨基酸数目、种类、排列顺序不同,多肽链空间结构千变万化。
五、蛋白质的主要功能(生命活动的主要承担者):
1、构成细胞和生物体的重要物质,如肌动蛋白;
2、催化作用:如酶;
3、调节作用:如胰岛素、生长激素;
4、免疫作用:如抗体,抗原;
5、运输作用:如红细胞中的血红蛋白。
六、有关计算:
1、肽键数
= 脱去水分子数 = 氨基酸数目-肽链数
2、至少含有的羧基(—COOH)或氨基数(—NH2)
= 肽链数
第三节 遗传信息的携带者——核酸
1、核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA)。
2、核酸:是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用。
3、组成核酸的基本单位是:核苷酸,是由一分子磷酸、一分子五碳糖(DNA为脱氧核糖、RNA为核糖)和一分子含氮碱基组成;
组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸。
4、DNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、胸腺嘧啶(T)
5、RNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、尿
嘧 啶(U)
6、核酸的分布:真核细胞的DNA主要分布在细胞核中;
线粒体、叶绿体内也含有少量的DNA;RNA主要分布在细胞质中。
第四节 细胞中的糖类和脂质
一、相关概念:
1、糖类:是主要的能源物质;主要分为单糖、二糖和多糖等;
2、单糖:是不能再水解的糖.如葡萄糖;
3、二糖:是水解后能生成两分子单糖的糖;
4、多糖:是水解后能生成许多单糖的糖.多糖的基本组成单位都是葡萄糖;
5、可溶性还原性糖:葡萄糖、果糖、麦芽糖等。
生物高中必修一知识3第一节 细胞膜——系统的边界
一、细胞膜的成分:主要是脂质(约50%)和蛋白质(约40%)还有少量糖类(约2%--10%)。
二、细胞膜的功能:
1、将细胞与外界环境分隔开
2、控制物质进出细胞
3、进行细胞间的信息交流
三、植物细胞还有细胞壁,主要成分是纤维素和果胶,对细胞有支持和保护作用;其性质是全透性的。
第二节 细胞器——系统内的分工合作
一、相关概念:
1、细胞质:在细胞膜以内、细胞核以外的原生质,叫做细胞质。
细胞质主要包括细胞质基质和细胞器。
2、细胞质基质:细胞质内呈液态的部分是基质,是细胞进行新陈代谢的主要场所。
3、细胞器:细胞质中具有特定功能的各种亚细胞结构的总称。
二、细胞器的比较
1、线粒体:(呈粒状、棒状,具有双层膜,普遍存在于动、植物细胞中,内有少量DNA和RNA内膜突起形成嵴,内膜、基质和基粒中有许多种与有氧呼吸有关的酶),线粒体是细胞进行有氧呼吸的主要场所,生命活动所需要的能量,大约95%来自线粒体,是细胞的“动力车间”。
2、叶绿体:(呈扁平的椭球形或球形,具有双层膜,主要存在绿色植物叶肉细胞里),叶绿体是植物进行光合作用的细胞器,是植物细胞的“养料制造车间”和“能量转换站”,(含有叶绿素和类胡萝卜素,还有少量DNA和RNA,叶绿素分布在基粒片层的膜上,在片层结构的膜上和叶绿体内的基质中,含有光合作用需要的酶)。
3、核糖体:椭球形粒状小体,有些附着在内质网上,有些游离在细胞质基质中,是细胞内将氨基酸合成蛋白质的场所。
4、内质网:由膜结构连接而成的网状物,是细胞内蛋白质合成和加工,以及脂质合成的“车间”。
5、高尔基体:在植物细胞中与细胞壁的形成有关,在动物细胞中与蛋白质(分泌蛋白)的加工、分类运输有关。
6、中心体:每个中心体含两个中心粒,呈垂直排列,存在于动物细胞和低等植物细胞,与细胞的有丝分裂有关。
7、液泡:主要存在于成熟植物细胞中,液泡内有细胞液。
化学成分:有机酸、生物碱、糖类、蛋白质、无机盐、色素等。有维持细胞形态、储存养料、调节细胞渗透吸水的作用。
8、溶酶体:有“消化车间”之称,内含多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌。
三、分泌蛋白的合成和运输:
核糖体(合成肽链)内质网(加工成具有一定空间结构的蛋白质)高尔基体(进一步修饰加工)囊泡细胞膜细胞外
四、生物膜系统的组成:包括细胞器膜、细胞膜和核膜等。
第三节 细胞核——系统的控制中心
一、细胞核的功能:
是遗传信息库(遗传物质储存和复制的场所),是细胞代谢和遗传的控制中心;
二、细胞核的结构:
1、染色质:由DNA和蛋白质组成,染色质和染色体是同样物质在细胞不同时期的两种存在状态。
2、核膜:双层膜,把核内物质与细胞质分开。
3、核仁:与某种RNA的合成以及核糖体的形成有关。
4、核孔:实现细胞核与细胞质之间的物质交换和信息交流。
生物高中必修一知识4第一节 物质跨膜运输的实例
一、渗透作用:水分子(溶剂分子)通过半透膜的扩散作用。
二、原生质层:细胞膜和液泡膜以及两层膜之间的细胞质。
三、发生渗透作用的条件:
1、具有半透膜
2、膜两侧有浓度差
四、细胞的吸水和失水:
外界溶液浓度>细胞内溶液浓度细胞失水
外界溶液浓度
第二节 生物膜的流动镶嵌模型
一、细胞膜结构:磷脂 蛋白质 糖类
二、结构特点:具有一定的流动性;功能特点:选择透过性
第三节 物质跨膜运输的方式
一、相关概念:
1、自由扩散:物质通过简单的扩散作用进出细胞。
2、协助扩散:进出细胞的物质要借助载体蛋白的扩散。
3、主动运输:物质从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量。
二、自由扩散、协助扩散和主动运输的比较
三、离子和小分子物质主要以被动运输(自由扩散、协助扩散)和主动运输的方式进出细胞;大分子和颗粒物质进出细胞的主要方式是胞吞作用和胞吐作用。
生物高中必修一知识5第一节 降低化学反应活化能的酶
一、相关概念:
1、新陈代谢:是活细胞中全部化学反应的总称,是生物与非生物最根本的区别,是生物体进行一切生命活动的基础。
2、细胞代谢:细胞中每时每刻都进行着的许多化学反应。
3、酶:是活细胞(来源)所产生的具有催化作用(功能:降低化学反应活化能,提高化学反应速率)的一类有机物。
4、活化能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量。
二、酶的发现:
1、1783年,意大利科学家斯巴兰让尼用实验证明:胃具有化学性消化的作用;
2、1836年,德国科学家施旺从胃液中提取了胃蛋白酶;
3、1926年,美国科学家萨姆纳通过化学实验证明脲酶是一种蛋白质;
4、20世纪80年代,美国科学家切赫和奥特曼发现少数RNA也具有生物催化作用。
三、酶的本质:
大多数酶的化学本质是蛋白质(合成酶的场所主要是核糖体,水解酶的酶是蛋白酶),也有少数是RNA。
四、酶的特性:
1、高效性:催化效率比无机催化剂高许多;
2、专一性:每种酶只能催化一种或一类化合物的化学反应;
3、酶需要较温和的作用条件:在最适宜的温度和pH下,酶的活性最高。
温度和pH偏高和偏低,酶的活性都会明显降低。
第二节 细胞的能量“通货”——ATP
一、ATP的结构简式:
ATP是三磷酸腺苷的英文缩写,结构简式:A-P~P~P,其中:A代表腺苷,P代表磷酸基团,~代表高能磷酸键,-代表普通化学键。
注意:ATP的分子中的高能磷酸键中储存着大量的能量,所以ATP被称为高能化合物。这种高能化合物化学性质不稳定,在水解时,由于高能磷酸键的断裂,释放出大量的能量。
二、ATP与ADP的转化
第三节ATP的主要来源——细胞呼吸
一、相关概念:
1、呼吸作用(也叫细胞呼吸):指有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳或其它产物,释放出能量并生成ATP的过程。
根据是否有氧参与,分为:有氧呼吸和无氧呼吸。
2、有氧呼吸:指细胞在有氧的参与下,通过多种酶的催化作用下,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放出大量能量,生成ATP的过程。
3、无氧呼吸:一般是指细胞在无氧的条件下,通过酶的催化作用,把葡萄糖等有机物分解为不彻底的氧化产物(酒精、CO2或乳酸),同时释放出少量能量的过程。
4、发酵:微生物(如:酵母菌、乳酸菌)的无氧呼吸。
二、有氧呼吸的总反应式:
C6H12O6 + 6O2——>6CO2 + 6H2O +能量
三、无氧呼吸的总反应式:
C6H12O6——>2C2H5OH(酒精)+ 2CO2+少量能量
或
C6H12O6——>2C3H6O3(乳酸)+少量能量
四、有氧呼吸过程(主要在线粒体中进行)
五、有氧呼吸与无氧呼吸的比较
六、影响呼吸速率的外界因素:
1、温度:温度通过影响细胞内与呼吸作用有关的酶的活性来影响细胞的呼吸作用。
温度过低或过高都会影响细胞正常的呼吸作用。在一定温度范围内,温度越低,细胞呼吸越弱;温度越高,细胞呼吸越强。
2、氧气:氧气充足,则无氧呼吸将受抑制;
氧气不足,则有氧呼吸将会减弱或受抑制。
3、水分:一般来说,细胞水分充足,呼吸作用将增强.但陆生植物根部如长时间受水浸没,根部缺氧,进行无氧呼吸,产生过多酒精,可使根部细胞坏死。
4、CO2:环境CO2浓度提高,将抑制细胞呼吸,可用此原理来贮藏水果和蔬菜。
七、呼吸作用在生产上的应用:
1、作物栽培时,要有适当措施保证根的正常呼吸,如疏松土壤等。
关键词:动物转基因;锌指核酸酶;应用;进展
前言
转基因在当前的科学研究领域虽然并非新的课题,但是其受瞩目的程度有增无减,主要是从特定生物体的基因组内提取所需的目的基因,或者人工合成指定序列的DN段,将其转入到生物体中,与生物体的基因组重组后,结合人工选育,获得具有稳定表现特定的遗传性状的个体,在新品种的培育方面意义重大。不过,常规意义上的转基因一般是指植物,如水稻、玉米等,对于动物转基因的研究尚属于一个比较新颖的领域。
1锌指核酸酶概述
锌指核酸酶(ZincFingerNuclease)属于一种人工合成酶,其化学本质为蛋白质。锌指核酸酶是一个由DNA识别结构域以及非特异性核酸内切酶的剪切结构域融合而成的物质,其N末端为锌指蛋白DNA结构域,包括了一系列的锌指蛋白,每一个锌指蛋白都能够对一个特意的三联体碱基进行识别和结合;C末端为非特异性核酸酶剪切结构域。相比较同源重组的DNA序列,锌指核酸酶具有更强的稳定性,而且其内部锌指结构和DNA强亲和性的特点,使得锌指核酸酶有着非常突出的特异性作用。锌指核酸酶技术凭借自身能够特异性识别并切割DNA序列的特点,以及良好的可设计性,被用于基因的定点突变和外源基因的定点整合,是最近几年发展起来的一种基因修饰技术。锌指核酸酶技术能够将一个非特异性的核算内切酶与含有锌指的结构域结合在一起,实现对于特定序列的切割。理论上,可以利用这种技术对染色体特定片段的删除,完成突变体的构造或者疾病的治疗[1]。在不断的研究过程中,锌指核酸酶已经被成功应用于动植物的转基因研究中,就实际效果而言,具有极高的基因整合效率。而在相关研究实验中,对特异性的锌指蛋白(ZFP)进行设计,是最为核心的内容。在针对ZFP识别结构域进行设计时,存在两种不同的思路,一是寡聚体库工程法,其所构建的锌指核酸酶与靶DNA具有较高的亲和性及特异性;二是模块组装法,即将能够识别三个连续碱基的锌指看作模块,参照目标序列,将不同的模块拼接在一起。
2锌指核酸酶在动物转基因研究中的应用及进展
经过了大量的研究和试验,锌指核酸酶技术在动物转基因的研究中得到了成功应用,取得了相当显著的进展,其主要体现在以下两个方面:
2.1基因定点敲除
在传统转基因研究中,采用的基因打靶技术虽然比较可靠,但是效率非常低下,在很大程度上阻碍了研究的进展,而锌指核酸酶技术(下文统称ZFN)的出现,为动物转基因的研究提供了一种相当可靠的技术手段。早在2001年,Bibikova等人就利用ZFN的特异识别性能,构建了一个靶基因质粒载体,这种载体与表达ZFN的质粒共同注入到卵母细胞中,发现ZFN能够切开靶基因,并利用同源重组对切口进行修复。在这个研究的基础上,他们又利用ZFN技术,敲除了X染色体上存在的yellow基因,同时发现这种变异可以非常稳定的遗传给后代。上述研究结果使得ZFN技术在动物转基因的研究中的应用成为了可能。Meng等人在相关研究中,针对斑马鱼血管内皮细胞的生长因子受体基因,设计出了一种ZFNmRAN,将其注入到细胞期的斑马鱼胚胎中,能够带来极大的突变效率,虽然同样存在有脱靶现象,但是相关的研究实验也从正面表明了可以通过注入mRNA的方式,实现基因打靶[2]。利用专业打靶GGTA1基因,对半乳糖苷酶转移酶的催化区域中的ZFN进行编码,可以得到相应的突变个体,产生GGTA1基因敲除的母体,而通过将ZFN电转染入雄体胚胎成纤维细胞的方式,同样能够实现基因打靶,打靶效率在5.7%,产生GGTA1基因敲除的雄体,表明ZFN在雌雄细胞中都能够起到相应的基因敲除作用,从而为人类基因相关疾病的治疗提供了一个良好的模型。
2.2基因定点重组
上述研究均表明,ZFN技术的应用,能够非常显著的提升基因靶向敲除的效率,而事实上,其在动物转基因中取得的进展不止于此。最近的一些研究项目表明,ZFN技术在提高同源重组效率,实现基因定点重组方面同样有着巨大的作用。Porteus等人将预先构建好的ZFN特异识别序列插入到GFP基因中,然后将其整合到了HEK293细胞中,形成了具备突变型GFP的HEK293稳定细胞系,并利用连接在CMV启动子上的ZFN表达质粒以及表达野生型GFP同源供体质粒,对稳定细胞系进行转染。结果显示,部分细胞中存在的突变GFP得到了修复,这也表明了ZFN技术可以在哺乳动物体细胞中实现基因打靶。另外,2010年,Melanie等针对小鼠Rosa26基因,设计构筑了一对ZFN,将潮霉素基因同源打靶载体、Venus同源打靶载体以及β-半乳糖苷酶分别与ZFN一起注射到了小鼠原核胚胎中,产生了转基因小鼠,经分析鉴定,同源打靶效率在1.7%-4.5%左右[3]。
3结语
总而言之,大量的研究实验表明,锌指核酸酶技术在动物转基因研究中得到了成功应用,取得了相当的成果,能够在细胞水平或个体水平上,进行相应的基因敲除和基因重组操作,从而为没有获得ES细胞的转基因动物提供了一种基因操作的可能性。虽然从目前来看,锌指核酸酶技术在实际应用层面尚存在一些不足,但是相信经过不断的研究和探索,相关技术必然会愈发完善。
参考文献:
[1]刘晓,方永志,刘文浩,等.锌指核酸酶技术在动物转基因研究中的应用[J].山东农业科学,2013,45(2):135-138.
关键词:分子生物学;农学学科;分子育种
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)16-0201-02
分子生物学是21世纪最具创新性和活力的学科,它主要讲授生物学领域的基础知识和最新研究进展,如:核酸、RNA和蛋白质的结构和功能、遗传信息的表达与调控、转基因等[1]。通过本课程的学习,可以促使农科学生从分子水平上认知生命现象的本质,增强同学们探索生命现象本质的兴趣。更为重要的是,本课程能让同学们掌握现代分子生物学的基本理论和技术,为其他专业课的学习和今后的发展奠定基础。生物技术是推动现代农业向前发展的重要引擎,掌握基本的生物学理论和技术能促进农科学生的就业,并为他们将来从事生命科学的相关研究打下坚实的基础。同时,我们也应该看到,分子生物学在实际的教学过程中存在众多的问题,如基础知识点量大、新知识涌现快、课时严重不足等,以上种种问题直接导致分子生物学的教学工作困难重重。仅凭借传统的教学手段和方法已经很难适应市场对新时代毕业生的要求,教学改革势在必行[2]。本文将结合本人学习和教授分子生物学中的经历和经验,对如何提高和改进分子生物学的教学工作提出以下四方面的观点。
一、优化章节教学内容、突出基础性
传统的分子生物学课本通常会包括:核酸结构与功能、DNA到RNA、mRNA到蛋白质、分子生物学研究技术和方法、原核基因的表达调控、真核基因的表达调控、疾病与人类健康、基因与发育、基因组与比较基因组学等章节。要想在32个课堂教学的学时内完成这些内容的教学,几乎是不可能的,即使能够讲完这些章节,上课效果也会大打折扣,因此需要对全部讲授内容进行有目的精简和优化。
《生物化学》和《遗传学》也是农科本科生的必修课程,且这两门课程与《分子生物学》课程的教学内容有交叉,例如核酸和蛋白质的结构等。因此在有限的学时内讲授《分子生物学》课时,就需要根据农学专业的前修课程,进行相关调整和整合。根据内容的基础性和重要性,将全部内容整合成如下章节:核酸的结构与功能、DNA的表达与调控、RNA的翻g与调控、基因组与比较基因组学。其中“核酸的结构与功能”在《生物化学》课程中有大量讲解,因此,此章节可以降低为6个学时;“DNA的表达与调控”章节的内容涉及mRNA水平上的调控、真核生物的表达调控、原核生物的表达调控等内容,内容较多,涉及基础知识点较多,对后续专业课和学生继续深造有较大影响,应分配12个学时;“RNA的翻译与调控”涉及mRNA的翻译过程、翻译过程调控机理、原核生物和真核生物的翻译调控,本章节也是本课程的重要章节,对后续专业课和继续深造有较大影响,涉及较多前沿知识点,应分配10个学时;“基因组与比较基因组学”涉及测序等现代技术,是大多数同学们从未涉及到的知识,起到承前启后的作用,所以应选取此章节进行讲解,并分配4个学时。
二、合理化实验教学、突出实用性
实验设计的原则是:突出基础性、与课堂知识的关联性、不同实验间的连续性,最重要的是要有实用性,且是目前农学专业研究生所用的主流实验技术。只有实用的实验技术才能满足农学本科毕业生将来的工作和进一步深造的需求,只有基础性的实验才能加深同学们对于基础理论的理解,并为他们自主设计实验提供技术支撑。基于以上原则,我们设计了以下分子生物学实验内容及学时分配:重组质粒的构建(2学时)、质粒转化(3学时)、大肠杆菌培养(2学时)、质粒提取(2学时)、质粒酶切(2学时)、目的基因的琼脂糖分离(3学时)、分离目的基因的处理及测序(2学时)。这个系列的实验包括了生物工程的质粒重组、转化、菌培养、质粒提取、酶切、电泳、测序,基本涵盖了分子生物学知识获取的全部重要实验和分析技术,有助于加深同学们对相关知识点的理解,并为同学们的自主实验设计提供技术支撑。
三、应用微信、QQ等社交软件传授知识、突出趣味性
同学们都是新世纪成长起来的年轻人,对待新鲜事物容易接受,因此能否借助现代社交软件(如微信、QQ等)传授知识,是能否真正将知识灌输给同学们的关键。“微信”和“QQ”软件是目前中国最流行的社交软件,而智能手机的普及推动了利用这些软件进行信息交流的全天候化。教授一门课程时要求全体同学们加为“微信”和“QQ”好友,然后就可以利用“微信”里的“朋友圈”和“QQ”里的“好友动态”全天候的给同学们灌输知识。
当然利用社交软件灌输知识不能采取和课堂授课同样的内容,只有的信息有“趣味性”,才能引起同学们的兴趣,才最终起到辅助课堂教学并推动本门课程学习的目的。例如转发以下话题:“一个细胞引发的惨剧(2016-07-26,丁香园)”;“红杏出墙――肥胖易感基因FTO的家丑(2014-03-14,丁香园)”;“清华大学一实验室发生爆炸,博士后不幸死亡(2015-12-18,澎湃新闻)”警醒同学们的安全意识。
四、结合就业市场需求、突出前瞻性
农学专业学生未来的工作去向主要有以下几种:(1)考研;(2)本专业企事业单位;(3)本专业私人企业;(4)非本专业工作。对于从事本专业工作的同学,《分子生物学》的学习可能帮助他们考研和更快的开展相关工作;对于从事非本专业工作的同学,本课程的学习能拓宽他们的视野和眼界。因此,农学本科专业的《分子生物学》教学应立足于本专业未来的就业市场,而必须区别于其他专业的课程内容,并且突出前瞻性。
总之,《分子生物学》是高等学校农学专业重要的基础性课程,是很多后续课程的基石,授课效果的好坏对农学专业学生后续的发展至关重要。因此,我们在该课程的教授过程中,要不断探索和总结,以授课内容能否适应现代社会的发展和需求为评价标准。通过对教学内容的不断优化、实用性建设、新传授方法应用及接近市场需求,能培养出基础扎实、适应性强、能快速适应社会需求的新世纪人才。我将始终以“生以求知为乐,师以从教为荣”[3]作为自己的座右铭,时刻“自省吾身”并不断学习和求索,在高等教育的舞台上散发出自身的光芒。
参考文献:
[1]朱玉贤.现代分子生物学[M].第4版.北京:高等教育出版社,2012.
绝对的信仰神创论者的人数,要比人们预想的多得多,但没有哪个理性的人会支持《圣经》中提到的创造论。一些宗教和其他团体,包括很少一些科学团体提出的“智慧设计”(ID)理论,宣称人类起源和进化过程中的某些事件无法用纯自然的说法来解释。就其本质而言,这种说法是不科学的。
现代科学对于创世纪的解释没有《圣经》上的故事那么精彩,但绝对不缺乏神奇。根据科学解释,地球是在大约45亿年前,即大爆炸大约90亿年后,在一片大气和尘沙的旋风中与太阳及其他行星一起诞生的。5亿年后,我们的行星已经完全从它诞生的剧烈震动中恢复过来,在物质基础上已经可以孕育生命了。又过了不到5亿年时间,它真的孕育了生命。这个被称为宇宙最终的共同祖先(LUCA)的存在体,通过进化带来了所有已知的活的生命,包括各种微生物、植物、真菌、动物和人。
最初的有机组织也许是从滚烫,含硫、充满金属成分的岩浆水里的非生命物质中生成出来。这种难闻的混合物好像是被“添加”进了丰富的小有机分子,如氯基酸、糖、含氮碱基,以及其他典型的生物组成成分。过去几十年间,人们对空间、近太空物质,尤其是坠落到地球上的陨石的探索所得出的一个最令人震惊的发现是――许多生命的化学基本成分是在整个宇宙间自发形成的。有机化学反应,因为其被认为是有生命的有机组织的一个特点而得名,实际上是最广泛和平凡的化学反应,即碳的化学反应。
那么,“宇宙化学反应”到底是如何产生最初的活细胞的呢?这还是个谜,但这一进程也许可以用两个词来概括。一个是“化学反应”,也就是生命的本质。在被称作催化剂的酶和从阳光、矿物质或由其他有机组织形成的养分中所获得的能量的帮助下,活的生命不断地从小的非有机组织和有机组织的基本成分中制造它们自己的成分。同样的事情也发生在生命的起源中,只是其途径、催化剂的作用以及能量的来源尚不为人所知。
科学家们对此问题已经进行了大量的研究,但还没有找到真正的答案。现在能说的只是这一化学进程必须是高度决定性的和可复制的,就是说,在主要的条件下是必定会发生的。
第二个关键词是“可复制性”。目前这主要是由DNA(脱氧核糖核酸)来完成的功能,也许最早是由DNA的近亲,也就是RNA(核糖核酸)来完成的。
一开始,复制只发生在RNA分子上。不久,根据由RNA所提供的模板RNA分子开始参与到蛋白质的合成上来,于是这种复制就通过RNA(最终是通过DNA)扩展到了蛋白质上。反过来,复制通过蛋白质和越来越复杂的物质扩展到了细胞和多分子的有机组织上。
复制允许同一个实体一代代永无止境地复制下去,这是基因延续的基础。另外,因为在进程的保真度上难以避免会发生错误,复制必然会带来变异(在复制的形式上),因此也带来了不同种族间为争夺可利用的资源而进行的竞争。其必然的结果,就像查尔斯・达尔文首先描述的,是对那些最适合生存,尤其是,在已有的条件下制造后代的物种的选择。这一进程在可复制性一出现后就被加进了化学反应中,首先是在分子上,随后是在越来越复杂的聚合物上,一直到今天。
复制会出现变种和变形,而自然选择会对它们作出甄别。根据我们所知道的情况,这些变种完全是偶然发生的,没有任何的意向性和预见性,因此就有许多人认为生命的历史是由偶然事件来控制的。但是这种观点忽略了自然选择所提供选择的排列会足够延伸,从而允许出现一个最佳或接近最佳选择的可能性。
事实上,有很大的理由相信,最优化选择也许比人们普遍所预期的要更多地发生在起源和进化的过程中。这表明,只要是在与其在地球上诞生时相似的环境条件下,就很有可能产生与我们所知的相同的生命形式,由此也证明我们今天对地球外生命的兴趣是正确的。
摘要:在生物科学迅猛发展的形势下,笔者结合本院的教学实际,对动物生物化学的教学现状进行了简要分析,从生源特点、教学内容、教学方法等方面进行了改革与实践,对学生因材施教,对教学内容根据专业特点因异而变,采用多种教学方法,取得了良好的教学效果。动物生物化学是在分子水平上阐明生命有机体化学本质的一门学科。作为动物医学、动植物检疫学、动物科学、兽医专业、兽药专业、饲料专业和畜牧及畜牧兽医专业的基础主干课程,在教学中起着联系基础专业的桥梁作用,同时也是畜牧兽医类专业考研的必考科目之一。在全国范围内,动物生物化学的授课对象绝大多数是畜牧兽医专业的二年级大学生[1]。课程本身具有理论性强、抽象复杂、知识更新速度快等特点。随着学科的迅猛发展,需要学习的知识也越来越多,越来越难[2]。同时许多新技术也越来越尖端化,远离临床实践,导致学生学习出现畏难情绪,加之对于所学专业又不知道如何应用,最终导致教学质量的下降,影响了课程的教学效果。因此,为适应学科发展,开展动物生物化学教学改革,不断提高动物生物化学教学质量,是生物化学教师面临的重要课题之一。
1当前本院动物生物化学教学面临的几个问题
1.1教师队伍整体水平不高
目前教研室不乏具有硕士学位的中青年教师,但是多数教师基本上是从学校学生到教师的角色转换,缺乏教学实践经验以及授课技巧;而对于教学经验和授课技巧丰富的老教师而言,由于缺少专业相关交流机会,信息相对闭塞,对新知识、新技术的接触有限。因此,提升老教师的专业知识水平,拓宽知识结构和提高新教师的教学水平是解决此问题的关键。
1.2学生生源复杂,基础参差不齐
本院生源有两大来源:一类是普高生源,化学基础扎实;另一类是对口生源(职业高中),这类生源的学生化学基础知识薄弱。本院在现在的专业分班当中有些班级将两种生源混合编制,这样就造成了教师在授课时面临一些问题,例如讲深了对口生听不懂,讲浅了普高生听着又简单,另外在考试中也会面临一些相类似的问题。
1.3课程授课内容与学科当前发展相比有些滞后
随着分子生物学的快速发展,其理论、技术也在不断更新,这给该课程的教学提出了更高的要求。例如在实验课开设方面,目前开设的实验多数都是以基础生物化学为主,主要为一些定性、定量分析实验。而且实验课的开设不分专业特点,都是一样的内容,这样并不能满足不同专业学生对实践的需求。因此,各专业实验设计亟待更新;然而增设分子生物学相关实验又会面临实验经费不足等问题,实验设计需要改革与新增实验成本较高也是一个亟需解决的矛盾。
1.4教学方法单一
教学方法是教师指导学生为了实现教学目的在教学过程中所采用的一系列办法和措施。传统的教学方法以教师和教材为中心,教师单纯的教授,教学方法单一,很难调动学生的学习兴趣。
2动物生物化学教学改革的初步研究
在综合分析了本院当前在动物生物化学教学中存在的问题后,针对性地采取了一些教学改革措施,具体情况如下。
2.1提高教师队伍建设水平
教师是影响教学质量的关键。为跟上生物化学发展的节奏,积极争取经费,本院鼓励老教师外出学习、进修,参加学术会议等,使其不断加强理论学习,掌握学科发展动态,补充新技术和新知识。为加强对青年教师专业知识、教学方法等方面的培养,一方面可请有多年教学经验的老教师当面讲授教学经验和技巧;另一方面可组织年轻教师与老教师之间相互听课,然后彼此交换意见,提高青年教师的教学水平,同时鼓励年轻教师外出继续深造。
2.2依据生源分班授课
以本科生为主,打乱原有班级编制,按照生源的不同分为强化班(普高生源)和普通班(对口生源),分开教学。强化班在授课时针对各个章节的重点、难点仔细讲解,深度剖析,并结合前沿和应用激发学生对生物化学的学习和研究兴趣。普通班针对其化学基础差的特点,采用由线到点的方法,先给他们讲一个轮廓,让他们了解各大物质代谢的过程;然后根据其掌握程度结合教学大纲和学生兴趣再进行深入讲解。在上课过程中,学生可以根据自己的接受程度自由选择在强化班还是普通班上课,这样有针对性地采取不同的授课方法,使学生学习时能各取所需,收到了很好的教学效果。
2.3优化教学内容
在理论教学上,课程安排、教学大纲制订及课时设置顺应生物化学学科的发展,进行教学大纲、教学内容及学时的调整,计划减少经典的生物化学学科内容,例如物质代谢及代谢调控的学时数,增加分子生物学内容的学时数(包括基因工程技术、DNA序列测定、PCR技术等学时数),以便学生能在有限的学时里了解和掌握生物化学学科发展的最新动态和成就,提高学科知识的广度、深度和跨度。而对于基因工程及分子生物学研究的主要技术这些章节,围绕这些重点和难点,分不同专题开展主题讲座,使教师能在生动、形象的教学过程中把新知识、新理论、新技术传授给学生,达到提高教学质量的最终目的。在实验教学上,更新实验内容,减少验证性实验,增加设计性实验,不同层次、不同专业地展开教学;根据培养目标选择不同的实验内容和项目,让学生掌握本专业所需的实验技术。
2.4针对不同的教学内容采用不同的教学方法
2.4.1讲授教学法
用讲授法系统地对整门课程进行阐述,使学生熟悉本门课程都包括哪些主要内容,在头脑中形成大概轮廓,并知道学习本门课程后将会有哪些收获,激发学生的学习兴趣。
2.4.2积极采用多媒体辅助教学
在教学过程中,部分内容可以借助多媒体进行,例如糖类、核酸和蛋白质的结构(二、三、四级结构)及DNA的复制、转录和蛋白质的翻译等内容,可以利用多媒体展示三维彩色图片和三维动画,学生通过这些能更有效地理解和掌握这些问题,从而激发学生学习积极性和主动性,培养学生形成良好的学习氛围。
2.4.3将理论联系实践的内容融入到教学中
例如讲三大营养物质代谢,糖的酵解过程产生的乳酸会引起肌肉的疼痛;6-磷酸葡萄糖脱氢酶缺失的人吃了蚕豆后会发生“蚕豆病”;缺乏酪氨酸酶的人会导致黑色素合成障碍,引发皮肤、毛发变白,眼睛怕光的“白化病”;以及为什么减肥药中会有肉碱,磷脂代谢解释了某些毒蛇毒素的作用原理,等等。
2.4.4多运用比喻式教学
例如在生物氧化过程中,营养物质在体内氧化时释放的能量供给二磷酸腺苷(ADP)与无机磷合成三磷酸腺苷(ATP)的偶联反应,即氧化还原反应和磷酸化反应偶联在一起。把呼吸链比喻成一条河,把磷酸化偶联的部位比喻成一座座水电站,电子(水)在呼吸链(河中)上传递(流动)的时候,就会产生能量,这个能量推动ADP磷酸化生成ATP。这样讲解学生很快就会理解什么是氧化磷酸化。
2.4.5启发式教学
教师不能一味的讲解代谢的过程,而应按照提出问题、分析问题、解决问题的思路充分调动学生的兴趣和主动性。例如在糖代谢一章中,糖异生和磷酸戊糖途径讲授完之后,可以提出问题让学生思考,从而把两节内容互联起来。当机体受伤需要大量的核酸而不需要大量的烟酰胺腺嘌呤二核苷酸磷酸(NADPH)时,糖酵解和磷酸戊糖途径的代谢如何发展?反之,当机体不需要核酸而需要大量的NADPH时,糖酵解途径和磷酸戊糖途径的代谢又会如何发展?这时就要分析两个途径的特点及产物,还有两者之间的联系,他们共有的联系就是磷酸戊糖途径的非氧化分支阶段,当机体需要核酸而不需要NADPH时,糖酵解途径和磷酸戊糖途径的非氧化分支阶段的代谢会增强;反之,磷酸戊糖途径的氧化性分支代谢会增强,糖酵解代谢速度会减慢。
3结语
动物生物化学作为一门动物医学专业的重要基础课程,应该发挥其应有的作用。通过这次探索,结合本院的教学实际,取得了良好的教学效果。
参考文献:
[1]王贵吉,刘维全,刘.动物生物化学教学现状及思考[J].高等农业教育,2009(09):51-53.
建立3D结构图和动画库可以优化教学
教授生物化学课程时,如果用直观、动态和形象的手段让学生能运用多种感官参加认识活动,获得鲜明生动的表象,让其在感知基础上认识生命过程的化学本质,就能建立正确的生物化学概念并加以理解和记忆。动画能把生物化学过程用动态、具体的画面展示出来,以虚拟的方式传递不同信息,模拟知识点的情景,使学生对模糊的概念、抽象的理论有清晰的理解,将微观的生命活动直观地展现在学生面前,充分调动了学生的感官系统,促进了学生观察能力、思维能力、想象能力的发展。在运用动画库进行教学的同时与语言讲解相结合,有助于培养学生的抽象概括能力和语言表达能力,实现学生观察的目的性、实效性。对观察到的现象和结果,组织学生进行对照、分析、综合、判断、推理,从而达到对事物本质和规律的认识。如在讲授辅酶的组成、结构与功能,核酸的组成、结构和性质时,结合动画教学可以引起学生高度的兴趣,使认识过程发生深刻变化,取得较好的教学效果。
13D结构图和动画比传统的实物教学模型优越
量子化学软件系列的图形软件,可以准确按比例制作不同生物化学分子的彩色3D结构图。应用FLASH技术,可将这些结构图创建成生物过程相关生物分子的动画。如果用相应的软件,制成具有一定输出格式的文件,就能将各章节分子结构和化学反应集成的动画库用光盘存储为数量众多的动画模型。在教学中用动画模型取代实物模型,就能克服后者因体积和重量造成的携带不便,更新换代速度慢和不易修改等缺点。由于动画形象逼真,能够按比例模拟生物分子复杂的结构,因此,能提高学生的理解能力和学习效率,启发学生的想象力、创造力,培养学生的形象思维。利用计算机软件还可以方便地进行教学模型的修改与新建,及时补充新内容的模型,达到降低教学成本,提高教学质量的目的。
2有助于教师合理安排教学活动
有了完备的生物化学动画库,教师不必花大量时间在课堂上画图和展示教学模型,从而极大地节约了课堂讲授时间,可将节省下来的时间用于习题讲解或专题讲座。
利用3D动画库教学的实例
1辅酶的组成、结构和功能
辅酶的组成、结构和功能是酶化学章节的重点和难点。以前用幻灯片、图片和模型可以帮助那些具有较强空间想象力的同学进行理解和记忆,但仍需要较长的思考时间,眼睛和大脑容易产生疲劳,降低了学习效率;对那些想象力较差的学生而言学习难度更大。将这些内容制成3D动画后,其组成和各个部分的连接顺序就会变得形象、动态和直观,学生更容易理解和记忆。
2核酸的结构和功能
DNA和RNA的组成、结构,碱基环外和环内的化学反应以及碱基顺序的测定是本章的重点和难点,不少学生对此难以理解和记忆。为了让其容易掌握和理解,将这些内容制成3D动画,将核酸碱基顺序的测定动态演示给学生观看,学生就容易理解、记忆这些内容,而且3D动画还活跃了课堂气氛,使枯燥无味的内容变得生动有趣。
3D动画在生物化学教学中存在的不足
在生物化学教学中引入3D动画,虽然对提高课堂效率和教学效果起到了积极的作用,但同时也存在着一些不足,主要表现如下:
1不好把握课堂节奏
传统的生物化学教学,可以边讲边写,合理安排,突出重点和难点内容。采用3D动画教学方式后,动画是事先做好的,可以替代板书内容和教学模型的展示,节省了时间。但这样可能会加快课堂节奏,如果把握不好既不利于学生课堂记笔记,还会减少学生思考、消化的时间,让有些学生跟不上教师的思路,产生新的学习困难和兴趣下降等问题。
2可能使教学方式模板化
采用3D动画教学,教师容易受到动画和课件的束缚,影响教师的讲解风格,使教师在教学过程中的主导地位降低。如果教师对教学内容不太熟悉,照着多媒体宣读,容易让学生有照本宣科的感觉而失去听课兴趣。过多使用动画中的声像效果,还容易分散学生的注意力,忽略教师的讲解。
提高3D动画教学效果的途径
1提前熟悉教学内容
采用3D动画教学,可以大大节省教师的图像描绘和文字书写时间,可以有更多的时间向学生展示更多的教学资料,增加课堂教学的信息量。要取得好的教学效果,教师有必要提前熟悉课本上的内容并查阅相关的资料以做到有的放矢,这样才能更好地利用3D动画,发挥自身个性。
2掌握好课堂教学节奏
在使用多媒体3D动画时,不能一味追求信息量大而忽略了教学节奏,应在屏与屏之间、动画与动画之间、小节与小节之间把握好时间间隔,让学生有时间看,来得及做笔记,给学生留出足够的思考时间。
1 分子生物技术概述
分子生物技术也称之为生物工程,是现代生物技术的主要标志,它是以基因重组技术和细胞融合技术为基础,利用生物体(或者生物组织、细胞及其组分)的特性和功能,设计构建具有预期性状的新物种或新品系,以及与工程原理相结合进行生产加工,为社会提供商品和服务的一个综合性技术体系,其内容包括基因工程技术、细胞工程技术、DNA测序技术、DNA芯片技术、酶工程技术等。现代分子生物技术的诞生以70年代DNA重组技术和淋巴细胞杂交瘤技术的发明和应用为标志,迄今已走过了30多年的发展历程。实践证明在解决人类面临的粮食、健康、环境和能源等重大问题方面开辟了无限广阔的前景,受到了各国政府和企业界的广泛关注,是21世纪高新技术产业的先导。医学领域是分子生物技术最先登上的舞台,也是目前现代分子生物技术应用最广泛、成效最显著、发展最迅速、潜力也最大的一个领域。据统计,国际上分子生物技术领域所取得研究成果的60%以上集中在医学领域。
2 分子生物技术在医学领域的重要应用
2.1 分子生物传感器在医学中的应用
分子生物传感器是利用一定的生物或化学固定技术,将生物识别元件(如酶、抗体、抗原、蛋白、核酸、受体、细胞、微生物、动植物组织)固定在换能器上,当待测物与生物识别元件发生特异性反应后,通过换能器将所产生的反应结果转变为可以输出、检测的电信号和光信号等,以此对待测物质进行定性和定量分析,从而达到检测分析的目的。分子生物传感器可以广泛地应用于对体液中的微量蛋白、小分子有机物、核酸等多种物质的检测。在现代医学检验中,这些项目是临床诊断和病情分析的重要依据。能够在体内实时监控的生物传感器对于手术中或重症监护的病人都很有帮助。
2.2 分子生物纳米技术在基因诊断中的应用
基因诊断是利用分子杂交及荧光技术检测DN段,已经为基因诊断在临床上的应用带来了巨大的发展前景。研究表明,利用纳米技术,如利用金纳米微粒结合杂交DN段,很容易进入机体细胞核,并与核内染色体组合,具有较高的特异性,可以克服目前基因诊断所面临的一些困难和问题,进一步提高了基因诊断在实验室中的地位。科学家通过超顺磁性氧化铁纳米粒脂质体对肝癌的研究,提高了直径3 mm以下的肿瘤检测率。结论表明,纳米微粒对肿
瘤早期发现、早期诊断具有重要意义。
2.3 分子生物技术在医学制药中的应用
分子生物技术发展的一个重要方向是医学制药的研究与开发。与传统的化学合成制药相比,它不仅具有针对性强、疗效好、副作用较小的优点,同时对蛋白质药物改造、提高疗效、降低毒性、提高稳定性具有重要作用,并且能够利用生物系统,将自然界中存在的含量极低的有效生物活性物质进行大规模生产以及建立起高效、快速、准确、简便的分子诊断技术和开发出新药,更重要的是可以预防和治疗一些应用传统治疗方法无法克服的疾病。目前这一领域的应用主要包括以下几个方面:生产基因工程药物;生产发酵工程药物;生产核酸类药物;利用生物系统加工天然药物;从海洋生物中纯化提取药物。
2.4 分子纳米技术在基因疗法中的应用
基因治疗是临床治疗学上的重大发展,其基本原理是:质粒DNA进入目的细胞后,可以修复遗传错误,或可产生治疗因子,如多肽、蛋白质、抗原等,纳米技术能使DNA通过主动靶向作用定位于细胞。将质粒DNA缩小到50~200nm,带上负电荷进入到细胞核,插入到细胞核DNA的确切部位,起到对症治疗效果。同时分子纳米技术能够快速有效地确定基因序列、基因和药物的体内走向、传送和定位传递,使临床诊断和治疗过程效率得以提高。同时无机纳米颗粒体积小,可在血管中随血液循环,透过血管壁进入各个脏器的细胞中,作为新型非病毒型基因载体能有效介导DNA的转导,并使其在细胞内高水平的表达,从而为基因表达、功能研究及基因治疗提供了新的技术和手段。
2.5 分子生物芯片技术在医学检验中的应用
关键词:药物化学;酶化学;基因化学;融合
文章编号:1005-6629(2009)01-0058-04中图分类号:G633.8文献标识码:B
美国 2005年第七次修订版高中化学教材Prentice Hall《Chemistry》[2], 将化学前沿科学知识中的药物化学、酶化学、基因化学与基础化学学科知识有机地融合在一起,不仅为教师教学提供丰富的教学资源,而且也有助于开拓学生的思维与视野,促进学生科学素养和综合能力的提高。
1Prentice Hall《Chemistry》教材中的药物化学、酶化学与基因化学知识
Prentice Hall《Chemistry》教材共有25章,其中涉及药物化学、酶化学和基因化学知识的共有9章,分别是:第1章(化学简介)、第4章(原子结构)、第6章(元素周期表)、第9章(物质命名和分子式)、第10章(物质的量)、第18章(反应速率和化学平衡)、第19章(酸、碱和盐)、第23章(官能团)、第24章(生命化学);涉及到的化学学科知识有:化学的起源和衍生,化学的发展领域,物质的分类,物质的命名和分子式,物质的量,物质成分的百分比和化学公式,化学反应速率,卤素取代物,蛋白质,氨基酸和核酸。
1.1药物化学
教材中渗透药物化学知识的内容有:含有医药成分的植物,如柳树和香草等;含有医药成分的动物,如蝎子和毒蛙等;与医药有关的职业,如药剂师;用作医药的麻醉剂,如三氟溴氯乙烷,醚类等;药品,如阿司匹林、盘尼西林和砒霜等;药物检测,如运动员兴奋剂的检测。(详见表1)
1.2 酶化学
教材中介绍酶化学的知识有:各种酶,例如,乳糖分解酶,尿毒酶,HIV蛋白酶,过氧化氢辅酶;酶的本质,即酶是一种蛋白质;酶在人体中的作用,例如,消化道酶可以加速脂肪的分解,充当化学催化剂的作用;酶的工作原理等。(详见表2)
1.3基因化学
教材中介绍的基因化学知识有:DNA双螺旋结构的发现及其分子表面的观察;DNA和RNA在遗传学上的作用;DNA和RNA的单体:单核苷酸;基因突变; DNA鉴定。(详见表3)
2药物化学、酶化学、基因化学知识与基础化学知识融合的三种形式
2.1利用药物化学、酶化学和基因化学知识导出基础化学知识
教材的第9章介绍化学物质的命名和分子式时,就利用对药物中毒的处理导出化学知识。
案例1:教材首先创设教学情境:在一般的家庭里我们都能找到可能大约上百种化学品,包括洗涤产品、医用药品和农药。当这些化学品混在一起块发生反应或家里的小孩不小心吞食而引起药品中毒时,大多数人不知道该如何处理,这时可以拨打毒物控制中心的电话,他们会提供关于怎样解救中毒者的信息。如果家庭成员能向毒物控制中心提供引起中毒的物质的一些信息,如中毒物质的名称或化学式,则会更有利于中毒者的及时解救,由此引出学习化学物质的命名和分子式的重要性。
又如在第24章,“氨基酸及其聚合物”中酶的介绍。
案例2:许多人不能消化乳糖,也就是说他们不能消化牛奶或奶制品。这些人之所以不能消化乳制品是因为他们的体内不能产生足够的乳糖酶来消化牛奶里的乳糖。如果他们食用了乳制品,就会引起胃涨和不适,要消除这种不适,他们可以在食用乳制品之前先服用一种药片,这种药片含有乳糖分解酵素,由此导出酶的概念及其在人体里功能的学习。
同样在介绍本章的核酸时,也是通过创设情境,由基因化学知识导出化学知识:
案例3:也许有人告诉过你:“你长着妈妈的眼睛,爸爸的鼻子”。当然,照字面的意思理解,这种说法是不完全正确的。你的眼睛就是你的眼睛,你的鼻子就是你的鼻子,但你身体里的蛋白质,基因确实继承于你的父母,由此导出核酸的学习。
以上几个例子都是利用药物化学、酶化学和基因化学知识来导出化学基本概念。从学生感兴趣的形象、生动和具体的事实与经验出发, 以学生熟悉的生活例子创设教学情境,使学生带着对药物化学、酶化学和基因化学知识的疑问来学习化学知识,很容易激起学生学习化学的兴趣与热情。
2.2基础化学知识作为药物化学、酶化学和基因化学知识的背景
“基础化学知识作为药物化学、酶化学和基因化学知识的背景”在该教材中也有很好的体现。
例如在第9章“物质的命名和化学式”中先介绍了化学物质的命名和书写,接着以此作为背景,在“化学领域中的职业”板块中引出药剂师这一职业。
案例4:医生会给病人开出处方药的单子,然后由药剂师去配药,药剂师要确保他们配的药和药的剂量不会危害到病人。一个具备一些化学知识和生物知识的人只能成为药剂师的助理,要想成为一名药剂师,需有大学药剂学的学位证,这个学位证要求修完化学生物数学、统计学和药物学等有关知识。
教材“化学领域中的职业”板块的介绍不但有利于学生了解化学在实际生活中的应用 , 也有利于高中生了解各式各样的职业 , 为将来的择业提供更多的参考信息。
又如,在学习了18章“反应速率和化学平衡”中催化剂的基础上,介绍了酶在人体中充当催化剂的作用。
案例5:酶是一种可以提高生命反应过程的催化剂,如果没有酶的催化作用,人体的许多生命活动就会变得很慢。例如,当你吃了富含蛋白质的肉后,你消化道里的消化蛋白酶就会在几小时之内分解这些蛋白质,如果没有这种酶,这个消化过程在体温条件下就需要花上几年的时间。同样在介绍DNA和RNA时,教材首先简述了它们的结构和组成,然后从基因的角度讲述了DNA和RNA的作用,还引出了一系列与遗传相关的内容:核苷酸、DNA分子的双螺旋结构、DNA鉴定、DNA重组以及克隆技术等。
这一形式基本是以药物化学、酶化学和基因化学知识为主,通过简单介绍相关化学知识, 着重讲解相关的药物化学、酶化学和基因化学知识。这样编排使学生不仅认识到学习化学基础知识的重要性,而且也会领悟到科学前沿知识在现实生活中的应用价值,以此激发他们的创新能力和求知欲望。
2.3药物化学、酶化学和基因化学知识作为基础化学知识的拓展
“药物化学、酶化学和基因化学知识作为基础化学知识的拓展”主要分布在各个章节的“社会与科技”板块中,该板块紧密联系社会与科技的发展,并且结合了大量生动的彩图来做说明。例如在第1章“化学简介”中的“社会与科技”板块,介绍了自然界中的药物。
案例6:大约40%的现代药物来源于植物或动物产生的化学物质。化学家必须先确认这些物质的成分和作用,然后提纯这些物质并说明它们对人体的作用,科学家就是研究如何使这些药物更有疗效或毒性更小。例如:
柳树皮:几个世纪以来,人们饮用柳树皮泡的茶来治疗头痛和其他小病痛。到1828年,科学家已经把柳树皮的有效成分分离出来,70年后,化学家们又在这种有效成分的基础上制得了阿司匹林。
毒蛙:化学家发现毒蛙的皮肤有一种毒物,并用这种物质来研究人的神经系统。结果表明,该物质是类似于吗啡一种较强的去痛药,但不会使人上瘾。
由此可知,早期的药物许多是由偶然性和经验性发现的,而且来源于自然界。为了使学生对这些天然药物有更清晰和更直观的认识,在这些药物彩图的一旁还有相应的文字说明。由化学起源和衍生将化学知识拓展到药物化学上。
又如24章(生命化学),在“酶是如何工作的”中,为我们解释了引起艾滋病病毒中的HIV蛋白酶是如何工作的,同时在介绍了酶的化学知识后,为我们拓展了“辅酶”知识。
案例7:一些酶不需要其他的物质就能对生物体中的物质直接催化,而有些酶则需要非蛋白质的辅酶来共同完成催化过程。辅酶可以是金属离子、有机小分子或水溶性维他命,例如VB,就是一种辅酶。作为辅酶的金属阳离子有:镁离子钾离子铁离子和锌离子。在过氧化氢酶的结构中包含有三价离子,它能催化双氧水的分解,得到水和氧气。
同样是24章,在介绍核酸的化学知识中,又为我们呈现了“DNA指纹鉴定”的知识。
案例8:DNA指纹鉴定的取样可以从头发皮肤细胞或体液中得到,DNA排列的顺序,如指纹,对每个人来说都是独一无二的,这种检验方法称为DNA指纹鉴定。要进行DNA指纹鉴定,首先,科学家会先从取样中分离出DNA,只要很少的样就能进行DNA指纹鉴定。酶用于分开在特别的碱基对顺序之间的DNA链,使得DNA从样品中分开,由此得到较大数量的DN段(这些DN段的长度和碱基对组成都是不一样的),然后通过对照已知的DNA样,从而得出DNA指纹鉴定是否和已知一致。
这种形式是以化学知识作为基础,利用化学知识拓展出与之相关的药物化学、酶化学与基因化学知识,有利于巩固所学的化学知识。所选取的药物化学、酶化学与基因化学知识相对来说都有一定的难度,使学生在掌握化学知识点后,增加课外知识来拓宽他们的视野,给学有余力的学生留下更大的学习和思维空间,便与继续探索和钻研。同时这种形式克服了学科本位的思想,用化学知识来解释不同领域中遇到的问题,使学生认识到化学学科的实用性及普遍性,体现了自然学科的整体性和相融性。
3 结论
3.1为教师教学提供丰富的素材
与我国高中化学教材相比, Prentice Hall《Chemistry》教材内容覆盖面较宽,呈现方式丰富多彩,特别是关于“21世纪化学发展趋势”的教学内容。教材中的化学前沿知识可以作为教师引入新知识的背景材料,也可以作为课堂教学相关资料插入,还可以作为拓展性阅读材料和作为科技活动素材等等,不仅大大丰富教师的教学素材,改进教师的教学思路,而且在教学过程中可以拉近高科技与基础化学教育的距离,使学生多了解本学科甚至是交叉学科领先的科学技术,从而达到学生学得轻松,教师教的愉快的效果,提高教学质量。
3.2有利于学生的STS教育
Prentice Hall《Chemistry》将代表化学21世纪化学发展趋势的现代科技和社会的一些重大问题及时地渗透到化学教学中,把化学教学与科学、技术和社会有机的结合起来,不仅使学生掌握化学的一些前沿知识,更重要的是使学生懂得这些知识和技能的实用价值和社会价值,懂得在社会中如何应用这些知识技能。通过STS 教育使学生广泛了解社会,接触社会,参与到社会生活中的一些重大问题之中,不仅可以培养他们的道德观念和社会责任感,使他们成为了解社会和关心社会的人,而且可以使学生形成正确的价值观和人生观。
3.3有利于培养学生的综合素质
Prentice Hall《Chemistry》教材中编入有关21世纪化学发展趋势的前沿性知识的方式,顺应了现代教材所倡导的课程综合化与融合性。教材没有配套的专门手册,也没有用专门的章节来讲解,而是采取内容的镶嵌式处理,如教材中穿插在历史上有重要影响的化学重大事件,有利于学生了解化学研究的文化背景,了解化学这门学科各领域的大致演变历程及其发展方向,感受化学是一门“核心、实用和创造性”的科学,并取得了巨大的成功。
参考文献:
[1]周青, 姚林娜,杨辉祥. 美国化学教材中的经济观念教育的启示[J]. 课程・教材・教法, 2005, (12): 82-86.
[2]占小红. 美国高中化学教材《化学:与变化着的世界相联系特色分析与启示》[J]. 化学教学,2005, (3): 28-29.
[3]Antony C Wilbraham, Dennis D Staley, Michael SMatta, etc. Chemistry[M]. NJ: Pearson PrenticeHall, US. 2005.