开篇:润墨网以专业的文秘视角,为您筛选了八篇实数集范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
【关键词】 自然数集;实数集;无穷;反证法
对角线论证,可以回答的问题像是:给你无限长的时间,你能否把所有的实数数完?而判断能不能数完,本质上是在比较自然数与实数的多少.问题也就等价于探讨自然数集与实数集大小的关系.然而两个集合元素的个数都是无穷的,如何来比较它们之间元素个数的关系呢?看似没有头绪的问题,康托却巧妙地仅仅通过抽象的论证,就证明了这个看似无从入手的问题.
如何比较两个集合的大小?
讨论如何比较两个集合的大小,先从一个简单的例子说起,假设许多观众涌入一个礼堂,我们如何判断观众数和座椅数的关系?
第一种方法,数数法.在观众进来之前,我们可以分别数一数观众与座椅,然后将两个数字加以比较,如果这两个数一样,那么就说明观众与座椅数相等.但是这种方法仅限于集合元素可数的情况下,在无穷集是没有办法实现的.
第二种方法,一一对应法.观众进入礼堂后找座椅坐下,当观众全部进入以后,如果刚好把座椅全部坐完,那么人和座椅的数目就是相等的,在这种状况下,我们不用通过数数就可以判断两个集合之间的关系.而实际上,人们数数也是建立在这种一一对应的基础上的,数数是把人数或座椅数和自然数做的一一对应,一一对应的观念是比自然数的数数更基本的观念.
乔治・康托对这一概念作出了如下定义:
如果能够根据某一法则,使集合M与集合N中的元素建立一一对应的关系,那么,集合M与集合N等价.
为什么(0,1)之间的实数与全体的实数一样多?
将(0,1)线段弯成半圆弧形,圆心为O,半圆下面是一条无限延伸的实数线.如图所示.
因为圆弧是由(0,1)线段弯曲而成,所以上面的点仍然代表线段(0,1)上的点.从O点作一条射线,分别交圆弧于A1点,交实数线于A2点,则A1与A2就是对应的,同理可以看出B1与B2对应,C1与C2对应,而实数线无穷远处的点与圆弧的两个端点对应,这样整个圆弧上的点就和这条无限延伸的实数线上的点一一对应起来,这也就证明了(0,1)集合与实数集的大小是相等的,(0,1)之间的实数与全体的实数一样多.
为什么实数永远数不完?
判断实数能不能数完,实质是比较自然数集与实数集之间的大小关系,因为两个集合都是无穷集,所以用数数的办法是不可能办到的,而只能采用一一对应的办法.一一对应,也就是建立自然数与实数的对应关系,因为前面已经论证(0,1)之间的实数与全体的实数一样多,所以在这里完全可以用(0,1)之间的实数代替全体的实数集.问题转化为比较(0,1)集合与自然数集之间的大小关系.
康托的对角线论证,采用的是大家熟悉的反证法,首先假定区间(0,1)内的实数能够与自然数一一对应,然后,从这一假定出发最终推出逻辑矛盾.对应关系我们假设如下:从(0,1)随机取一个数记为a1与自然数1对应,然后再取一个数记为a2与自然数2对应,依此类推,我们不在乎实数被取到的顺序,而是只在乎最终产生的一一对应.为了讲清楚康托的论证,我们假定存在如下的对应关系:
(1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。
(2)正确对复数进行分类,掌握数集之间的从属关系;
(3)理解复数的几何意义,初步掌握复数集C和复平面内所有的点所成的集合之间的一一对应关系。
(4)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力.
教学建议
(一)教材分析
1、知识结构
本节首先介绍了复数的有关概念,然后指出复数相等的充要条件,接着介绍了有关复数的几何表示,最后指出了有关共轭复数的概念.
2、重点、难点分析
(1)正确复数的实部与虚部
对于复数,实部是,虚部是.注意在说复数时,一定有,否则,不能说实部是,虚部是,复数的实部和虚部都是实数。
说明:对于复数的定义,特别要抓住这一标准形式以及是实数这一概念,这对于解有关复数的问题将有很大的帮助。
(2)正确地对复数进行分类,弄清数集之间的关系
分类要求不重复、不遗漏,同一级分类标准要统一。根据上述原则,复数集的分类如下:
注意分清复数分类中的界限:
①设,则为实数
②为虚数
③且。
④为纯虚数且
(3)不能乱用复数相等的条件解题.用复数相等的条件要注意:
①化为复数的标准形式
②实部、虚部中的字母为实数,即
(4)在讲复数集与复平面内所有点所成的集合一一对应时,要注意:
①任何一个复数都可以由一个有序实数对()唯一确定.这就是说,复数的实质是有序实数对.一些书上就是把实数对()叫做复数的.
②复数用复平面内的点Z()表示.复平面内的点Z的坐标是(),而不是(),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是.由于=0+1·,所以用复平面内的点(0,1)表示时,这点与原点的距离是1,等于纵轴上的单位长度.这就是说,当我们把纵轴上的点(0,1)标上虚数时,不能以为这一点到原点的距离就是虚数单位,或者就是纵轴的单位长度.
③当时,对任何,是纯虚数,所以纵轴上的点()()都是表示纯虚数.但当时,是实数.所以,纵轴去掉原点后称为虚轴.
由此可见,复平面(也叫高斯平面)与一般的坐标平面(也叫笛卡儿平面)的区别就是复平面的虚轴不包括原点,而一般坐标平面的原点是横、纵坐标轴的公共点.
④复数z=a+bi中的z,书写时小写,复平面内点Z(a,b)中的Z,书写时大写.要学生注意.
(5)关于共轭复数的概念
设,则,即与的实部相等,虚部互为相反数(不能认为与或是共轭复数).
教师可以提一下当时的特殊情况,即实轴上的点关于实轴本身对称,例如:5和-5也是互为共轭复数.当时,与互为共轭虚数.可见,共轭虚数是共轭复数的特殊情行.
(6)复数能否比较大小
教材最后指出:“两个复数,如果不全是实数,就不能比较它们的大小”,要注意:
①根据两个复数相等地定义,可知在两式中,只要有一个不成立,那么.两个复数,如果不全是实数,只有相等与不等关系,而不能比较它们的大小.
②命题中的“不能比较它们的大小”的确切含义是指:“不论怎样定义两个复数间的一个关系‘<’,都不能使这关系同时满足实数集中大小关系地四条性质”:
(i)对于任意两个实数a,b来说,a
(ii)如果a
(iii)如果a
(iv)如果a0,那么ac
(二)教法建议
1.要注意知识的连续性:复数是二维数,其几何意义是一个点,因而注意与平面解析几何的联系.
2.注意数形结合的数形思想:由于复数集与复平面上的点的集合建立了一一对应关系,所以用“形”来解决“数”就成为可能,在本节要注意复数的几何意义的讲解,培养学生数形结合的数学思想.
3.注意分层次的教学:教材中最后对于“两个复数,如果不全是实数就不能本节它们的大小”没有证明,如果有学生提出来了,在课堂上不要给全体学生证明,可以在课下给学有余力的学生进行解答.
复数的有关概念
教学目标
1.了解复数的实部,虚部;
2.掌握复数相等的意义;
3.了解并掌握共轭复数,及在复平面内表示复数.
教学重点
复数的概念,复数相等的充要条件.
教学难点
用复平面内的点表示复数M.
教学用具:直尺
课时安排:1课时
教学过程:
一、复习提问:
1.复数的定义。
2.虚数单位。
二、讲授新课
1.复数的实部和虚部:
复数中的a与b分别叫做复数的实部和虚部。
2.复数相等
如果两个复数与的实部与虚部分别相等,就说这两个复数相等。
即:的充要条件是且。
例如:的充要条件是且。
例1:已知其中,求x与y.
解:根据复数相等的意义,得方程组:
例2:m是什么实数时,复数,
(1)是实数,(2)是虚数,(3)是纯虚数.
解:
(1)时,z是实数,
,或.
(2)时,z是虚数,
,且
(3)且时,
z是纯虚数.
3.用复平面(高斯平面)内的点表示复数
复平面的定义
建立了直角坐标系表示复数的平面,叫做复平面.
复数可用点来表示.(如图)其中x轴叫实轴,y轴除去原点的部分叫虚轴,表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。原点只在实轴x上,不在虚轴上.
4.复数的几何意义:
复数集c和复平面所有的点的集合是一一对应的.
5.共轭复数
(1)当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。(虚部不为零也叫做互为共轭复数)
(2)复数z的共轭复数用表示.若,则:;
(3)实数a的共轭复数仍是a本身,纯虚数的共轭复数是它的相反数.
(4)复平面内表示两个共轭复数的点z与关于实轴对称.
三、练习1,2,3,4.
四、小结:
1.在理解复数的有关概念时应注意:
(1)明确什么是复数的实部与虚部;
(2)弄清实数、虚数、纯虚数分别对实部与虚部的要求;
(3)弄清复平面与复数的几何意义;
(4)两个复数不全是实数就不能比较大小。
2.复
数集与复平面上的点注意事项:
(1)复数中的z,书写时小写,复平面内点Z(a,b)中的Z,书写时大写。
(2)复平面内的点Z的坐标是(a,b),而不是(a,bi),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是i。
(3)表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。
(4)复数集C和复平面内所有的点组成的集合一一对应:
五、作业1,2,3,4,
六、板书设计:
§8,2复数的有关概念
关键词:函数列;收敛;一致收敛
函数列收敛与一致收敛理论是数学分析中的重要概念之一,同时也是教与学的难点。但是学生往往对定义理解不透彻,生搬硬套“?着-N”语言,加之各种版本的数学分析教科书将函数列的收敛问题与函数项级数的收敛问题放在一起,使得教与学更为困难。本文从实数数列的收敛问题中引出函数列的收敛,进而引出一致收敛,逐步推进,使得这部分内容更易学习并掌握。
实数序列的收敛问题是定义在实数集上的,其实函数序列的收敛性也是如此,函数序列的收敛性反映的是函数列在点集上的局部性质,也就是说,函数列在点集上的收敛性就是实数序列的收敛问题。下面就从这个角度讨论函数列的收敛与一致收敛问题。
一、收敛的几个定义
实数列的收敛性定义
定义1:设xn是实数序列,a是实数,若对任意给定的正数?着,都存在相应的正整数N,使得当n>N时,恒有xn-a
几何上,xna的意思是:数轴上跳动的点xn与定点a之间的距离,随着n的无限变大而无限变小,无论?着是怎样小的数,做点a的?着邻域(a-?着,a+?着),跳动的点迟早有一次将跳进去,再也跳不出来,这个次数便可作为N。
但是例如序列:(1+ ),(1+ )2,(1+ )3,…,(1+ )n,…有极限ex,这个序列的特点是每一项都是函数,极限也是x的函数,这样构成的序列就不是实数序列了,而是函数序列,可以记为:fn(x),收敛定义如下:
定义2:设函数列fn(x)每一项fn(x)及函数f(x)均在数集E上有定义,若?坌x∈E,函数列fn(x)收敛于f(x),则称函数列fn(x)在E上收敛于f(x),并称函数f(x)是函数列fn(x)的极限函数。
定义2也可以用“?着-N”语言描述:设函数列fn(x)每一项fn(x)及函数f(x)均在数集E上有定义,对?坌x∈E,?坌?着>0存在正数N,使得当n>N时,总有fn(x)-f(x)
我们发现,函数列fn(x)的收敛问题不仅要考虑fn(x)的趋向,还要考虑极限函数f(x),但是我们也发现取定x0∈E时,代入fn(x)即得实数序列:f1(x0),f2(x0),…,fn(x0)…,这时就是实数序列的收敛性问题了。
函数列fn(x)收敛的定义中是对每一个固定的x∈E,根据给定的?着找N,一般来说,这样找到的N不仅与?着有关,而且与x有关,可记为N(?着,x)。但是对于函数列,仅停留在谈论一点上的收敛是远远不够的,重要的是研究极限函数与函数列所具有的解析性质的关系,例如能否根据函数列每项的连续性和可导性来判断出极限函数的连续性和可导性,或极限函数的导数或积分,是否分别是函数列每项的导数或积分的极限,显然只研究函数列在一点处的收敛不能满足要求。
例如:函数列fn(x)=xn(x∈[0,1]),n∈N,它处处收敛于函数f(x)=0 x∈[0,1)1 x=1,但是极限函数f(x)不连续,也就是说收敛性不能保证极限函数的连续性。
那么是否能根据正数?着找到一个公共的N,使得N只与?着有关,不妨记为N(?着),对此我们引进比点点收敛更强一点的收敛概念,那就是一致收敛,定义如下:
定义3:设函数列fn(x)每一项fn(x)及函数f(x)均在数集E上有定义,若对任意?着>0,总存在正数N,使得当n>N时,对一切x∈E,都有fn(x)-f(x)
定义3的描述等价于:对于定义在同一数集E上的fn(x)和f(x),满足条件lim∞supx∈efn(x)-f(x)=0(n∞),进一步还等价于lim∞fn(x)-f(x)=0。显然定义3比定义2更强,定义3成立必能推出定义2成立。
定义4:设函数列fn(x)每一项fn(x)及函数f(x)均在数集E上有定义,若对任意[a,?茁]?奂E,fn(x)在[a,?茁]上都一致收敛于f(x),则称fn(x)在数集E上内闭一致收敛于f(x)。显然定义4比定义3更强,定义4成立必能推出定义3成立。
注1:函数列fn(x)在数集E内闭一致收敛于f(x),则必在E上收敛于f(x)。
注2:函数列fn(x)在非闭数集E上一致收敛于f(x),则必在E内闭一致收敛于f(x)。
注3:函数列fn(x)在闭数集E上一致收敛于f(x)的充分必要条件是在E内闭一致收敛于f(x)。
注4:fn(x)在(-∞,+∞)上内闭一致收敛等价于对一切充分大的N>0,fn(x)在[-N,+N]上一致收敛。
注5:fn(x)在(a,?茁)上内闭一致收敛等价于对一切充分小的a>0,fn(x)在[a+?滓,b-?滓]上一致收敛。(a,?茁这有限实数)
注6:fn(x)在(a,?茁]上内闭一致收敛等价于对一切充分小的?滓>0,fn(x)在[a+?滓,b]上一致收敛。(a,?茁这有限实数)
注7:fn(x)在数集E上一致收敛于f(x),则其任一子函数列fn(x)均在E上一致收敛于f(x)。
注8:fn(x)在数集E上内闭一致收敛于f(x),则其任一子函数列fn(x)均在E上内闭一致收敛于f(x)。
注7和注8可以类比实数序列与子序列的收敛关系,其实注7和注8便是对实数序列与子序列收敛关系的推广。
下面仅给出注2、注3的简单证明:
证明注2:
任给[a,?茁]?奂E,因fn(x)在E上一致收敛于f(x),则在[a,?茁]上一致收敛于f(x),即fn(x)在数集E上内闭一致收敛于f(x)。反之未必成立。
证明注3:
必要性:任给[a,?茁]?奂E,由于fn(x)在E上一致收敛于f(x),必在[a,?茁]上一致收敛于f(x),即在E内闭一致收敛于f(x);
充分性:由于fn(x)在E内闭一致收敛于f(x),故对闭数集E?奂E,也有fn(x)在E上一致收敛于f(x)。
二、一致收敛的几个等价命题
命题1(一致收敛的柯西收敛准则)
函数列fn(x)在数集E上一致收敛?圳对任给的?着
命题1等价于如下命题:
命题2:函数列fn(x)在数集E上一致收敛?圳对任给的?着>0,总存在正整数N,当n>N且x∈E时,对任意自然数p,都有fn+p(x)-f(x)
用命题1和命题2进行判别的优势在于不需要知道极限函数是什么,只是根据函数列本身的特点来判断函数列是否一致收敛。
例如:设函数列fn(x)=xn,n∈N,为定义在(-∞,+∞)上的函数列,证明它的收敛域是(-1,1],且极限函数为fn(x)=0,x
证明:任给?着>0,(不妨设?着>1),当0
以上内容通过实数列的收敛引出函数列的收敛、一致收敛以及一致收敛的等价命题,据此我们可以研究数项级数的收敛和函数项级数的收敛与一致收敛问题。
在数学学习与研究过程中,函数列的收敛和一致收敛的证明是一个非常重要的内容,这些内容在初等数学和高等数学中都有很好的体现。这些内容更是函数项级数的收敛与一致收敛的基础。以上讨论,为学习者理清了思路,帮助学习者掌握其中规律,增强对函数列收敛与一致收敛的概念理解。
参考文献:
[1]张宗达.工科数学分析[M].3版.北京:高等教育出版社,2008-01.
[2]郑维行,王声望.实变函数与泛函分析概要[M].4版.北京:高等教育出版社,2010-07.
1.通过本章的引言,使学生初步了解本章所研究的问题是集合与简易逻辑的有关知识,并认识到用数学解决实际问题离不开集合与逻辑的知识。
2.在小学与初中的基础上,结合实例,初步理解集合的概念,并知道常用数集及其记法。
3.从集合及其元素的概念出发,初步了解属于关系的意义。
二、内容分析
1.集合是中学数学的一个重要的基本概念。在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念与性质,就离不开集合与逻辑。
2.1.1节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
3.这节课主要学习全章的引言和集合的基本概念。学习引言是引发学生的学习兴趣,使学生认识学习本章的意义。本节课的教学重点是集合的基本概念。
4.在初中几何中,点、直线、平面等概念都是原始的、不定义的概念,类似地,集合则是集合论中的原始的、不定义的概念。在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识。教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集。”这句话,只是对集合概念的描述性说明。
三、教学过程
提出问题:
教科书引言所给的问题。
组织讨论:
为什么“回答有20名同学参赛”不一定对,怎么解决这个问题。
归纳总结:
1.可能有的同学两次运动会都参加了,因此,不能简单地用加法解决这个问题.
2.怎么解决这个问题呢?以前我们解一个问题,通常是先用代数式表示问题中的数量关系,再进一步求解,也就是先用数学语言描述它,把它数学化。这个问题与我们过去学过的问题不同,是属于与集合有关的问题,因此需要先用集合的语言描述它,完全解决问题,还需要更多的集合与逻辑的知识,这就是本章将要学习的内容了。
新课讲解:
1.集合的概念:(具体举例后,进行描述性定义)
(1)某种指定的对象集在一起就成为一个集合,简称集。
(2)元素:集合中的每个对象叫做这个集合的元素。
(3)集合中的元素与集合的关系:
a是集合A的元素,称a属于集合A,记作a∈A;
a不是集合A的元素,称a不属于集合A,记作。
例如,设B={1,2,3,4,5},那么5∈B,
注:集合、元素概念是数学中的原始概念,可以结合实例理解它们所描述的整体与个体的关系,同时,应着重从以下三个元素的属性,来把握集合及其元素的确切含义。
①确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
例如,像“我国的小河流”、“年轻人”、“接近零的数”等都不能组成一个集合。
②互异性:集合中的元素是互异的,即集合中的元素是没有重复的。
此外,集合还有无序性,即集合中的元素无顺序。
例如,集合{1,2},与集合{2,1}表示同一集合。
2.常用的数集及其记法:
全体非负整数的集合通常简称非负整数集(或自然数集),记作N,非负整数集内排除0的集,表示成或;
全体整数的集合通常简称整数集,记作Z;
全体有理数的集合通常简称有理数集,记作Q;
全体实数的集合通常简称实数集,记作R。
注:①自然数集与非负整数集是相同的,就是说,自然数集包括数0,这与小学和初中学习的可能有所不同;
②非负整数集内排除0的集,也就是正整数集,表示成或。其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成或。负整数集、正有理数集、正实数集等,没有专门的记法。
课堂练习:
教科书1.1节第一个练习第1题。
归纳总结:
1.集合及其元素是数学中的原始概念,只能作描述性定义。学习时应结合实例弄清其含义。
2.集合中元素的特性中,确定性可以用于判定某些对象是否是给定集合的元素,互异性可用于简化集合的表示,无序性可以用于判定集合间的关系(如后面要学习的包含或相等关系等)。
37到43中间的数有无数个,因为有理数和无理数,而整数有38、39、40、41、42等等5个。
有理数是整数,正整数、0、负整数和分数的统称,是整数和分数的集合。
整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
(来源:文章屋网 )
一、回顾已有相似概念,创设类比发现的问题情景
中学数学中有许多概念具有相似的属性,对于这些概念的教学,教师可先引导学生研究已学过的概念属性,然后创设类比发现的问题情景,引导学生去发现,尝试给新概念下定义,这样新的概念容易在原有的认知结构中得以同化与构建。
这类数学概念形成的问题情景创设一定要抓住新旧概念的相似点,为新的数学概念的形成提供必要的“认知基础”,通过与熟悉的概念类比(类比的形式多样,如平面与空间的类比、高维与低维的类比、有限与无限的类比,还有方法类比、结构类比、形式类比等等),可使学生更好地认识、理解、掌握新的数学概念。当然要注意类比得出的结论不一定正确,应引导学生修正错误的类比设想,直到得出正确结果。
二、由已有相关概念的比较,创设归纳发现的问题情景。
有些数学概念是已有概念的扩充,若能揭示概念的扩充规律,便可以水到渠成地引入新概念。例如复数概念的教学,先回顾已经历过的几次数集扩充的事实:正整数 自然数 非负有理数 有理数 实数,然后教师提出以下问题:
(1)上述数集扩充的原因及其规律如何?
实际问题的需要使得在已有的数集内有些运算无法进行,数集的扩充过程体现了如下规律:① 每次扩充都增加规定了新元素;② 在原数集内成立的运算规律,在数集扩充后的更大范围内仍然成立;③ 扩充后的新数集里能解决原数集不能解决的问题。有了上述准备后,教师提出问题:负数不能开平方的事实说明实数集不够完善,因而提出将实数集扩充为一个更为完整的数集的必要性。那么,怎样解决这个问题呢?
(2)借鉴上述规律,为了扩充实数集,引入新元素i,并作出两条规定。
这样学生对i的引入不会感到疑惑,对复数集概念的建立也不会觉得突然,使学生的思维很自然地步入知识发生和形成的轨道中,为概念的理解和进一步研究奠定基础。
类数学概念形成的问题情景创设的关键是揭示出相关概念的扩充发展的背景及其规律,从而引发新的数学概念的产生。
三、联想相关数学概念,创设引发猜想的问题情景
许多数学概念间存在着一定的联系,教师若能将新旧概念间的联系点设计成问题情景,引导学生建立起新旧概念间的联系,便可以使学生牢固地掌握新的概念。例如异面直线所成角的概念教学:
(1)展示概念背景:教师与学生一起以熟悉的正方体为例,请学生观察图中有几对异面直线?接着提问:从位置关系看,同为异面直线,但它们的相对位置,是否就没有区别?教师紧接着说:既然有区别,说明仅用“异面”来描述异面直线间的相对位置显然是不够的。在生产实际与数学问题中,有时还需要进一步精确化,这就提出了一个新任务:怎样刻划异面直线间的这种相对位置,或者说,引进一些什么数量来刻划这种相对位置?
(2)情境设计阶段:我们知道平面几何中用“距离”来刻划两平行直线间的相对位置,用“角”来刻划两相交直线间的相对位置,那么用什么来刻划两异面直线的相对位置呢?我们还知道两异面直线不相交,但它们又确实存在倾斜程度不同,这就需要我们找到一个角,用它的大小来度量异面直线的相对倾斜程度。为了解决这个问题,我们研究一道题:一张纸上画有两条能相交的直线a、b(但交点在纸外)。给你一副三角板和量角器,限定不许拼接纸片,不许延长纸上的线段,问如何能量出a、b所成的角的大小?
(3)猜想发现阶段:解决上述问题的方法是过一点分别作a,b的平行线,该方法能否迁移到两异面直线的倾斜程度呢?经学生研讨后能粗略地得出异面直线的倾斜程度可转化为平面内两条相交直线的角(即过一点分别作a、b的平行线,这两条平行线所成的角)。
(4)表述论证阶段:两异面直线所成角的范围规定在(0,/2 )内,那么它的大小,由异面直线本身决定,而与点O(一线的平行线与另一线的平行线的交点)的选取无关,点O可任选.一般总是将点O选在特殊位置.至此,两异面直线所成角的概念完全建立了,在这个过程中渗透了把空间问题转化为平面问题这一化归的数学思想方法。
这类数学概念形成的问题情景创设一定要抓住新、旧数学概念间的本质属性,为新概念的产生创设适当的固着点,使其孕育新的数学概念的形成。
四、提供感性材料,创设抽象与概括的问题情景
有些数学概念源于现实生活,是从生产、生活实际问题中抽象出来的,对于这些概念的教学要通过一些感性材料,创设抽象与概括的情景,引导学生提炼数学概念的本质属性。
这类数学概念形成的问题情景创设一定要遵循认识规律,从感性到理性,从具体到抽象,通过学生熟悉的实际例子,恰当地设计一些问题,让学生经过比较、分类、抽象等思维活动,从中找出一类事物的本质属性,最后通过概括得出新的数学概念。
五、通过学生实验,创设观察、发现的问题情景
有些数学概念可以通过引导学生从自己的亲自实验或通过现代教育技术手段演示及自己操作(如几何画板提供了很好的工具)去领悟数学概念的形成,让学生在动手操作、探索反思中掌握数学概念。例如椭圆概念的教学,它可分下列几个步骤进行:
(1)实验 获得感性认识(要求学生用事先准备的两个小图钉和一长度为定长的细线,将细线的两端固定,用铅笔把细线拉紧,使笔尖在纸上慢慢移动,画得图形为椭圆);
(2)提出问题,思考讨论。椭圆上的点有何特征?当细线的长等于两定点之间的距离时,其轨迹是什么?当细线的长小于两定点之间的距离时,其轨迹是什么?你能给椭圆下一个定义吗?
(3)揭示本质,给出定义。
象这样,学生经历了实验、讨论后,对椭圆的定义的实质会掌握得很好,不会出现忽略椭圆定义中的定长应大于两定点之间的距离的错误。
(1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;
(2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系;
(3)掌握复数的模的定义及其几何意义;
(4)通过学习复数的向量表示,培养学生的数形结合的数学思想;
(5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.
教学建议
一、知识结构
本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式.
二、重点、难点分析
本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.
三、教学建议
1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视.
2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系
如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点Z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示.
相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系.
2.
这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.
3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.
4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分).对于倒2的第(2)小题的图形,画图时周界(两个同心圆)都应画成虚线.
5.讲解复数的模.讲复数的模的定义和计算公式时,要注意与向量的有关知识联系,结合复数与复平面内以原点为起点,以复数所对应的点为终点的向量之间的一一对应关系,使学生在理解的基础上记忆。向量的模,又叫做向量的绝对值,也就是有向线段OZ的长度.它也叫做复数的模或绝对值.它的计算公式是.
教学设计示例
复数的向量表示
教学目的
1掌握复数的向量表示,复数模的概念及求法,复数模的几何意义.
2通过数形结合研究复数.
3培养学生辩证唯物主义思想.
重点难点
复数向量的表示及复数模的概念.
教学学具
投影仪
教学过程
1复习提问:向量的概念;模;复平面.
2新课:
一、复数的向量表示:
在复平面内以原点为起点,点Z(a,b)为终点的向量OZ,由点Z(a,b)唯一确定.
因此复平面内的点集与复数集C之间存在一一对应关系,而复平面内的点集与以原点为起点的向量一一对应.
常把复数z=a+bi说成点Z(a,b)或说成向量OZ,并规定相等向量表示同一复数.
二、复数的模
向量OZ的模(即有向线段OZ的长度)叫做复数z=a+bi的模(或绝对值)记作|Z|或|a+bi|
|Z|=|a+bi|=a+b
例1求复数z1=3+4i及z2=-1+2i的模,并比较它们的大小.
解:|Z1|2=32+42=25|Z2|2=(-1)2+22=5
|Z1|>|Z2|
练习:1已知z1=1+3iz2=-2iZ3=4Z4=-1+2i
⑴在复平面内,描出表示这些向量的点,画出向量.
⑵计算它们的模.
三、复数模的几何意义
复数Z=a+bi,当b=0时z∈R|Z|=|a|即a在实数意义上的绝对值复数模可看作点Z(a,b)到原点的距离.
例2设Z∈C满足下列条件的点Z的集合是什么图形?
⑴|Z|=4⑵2≤|Z|<4
解:(略)
练习:⑴模等于4的虚数在复平面内的点集.
⑵比较复数z1=-5+12iz2=―6―6i的模的大小.
⑶已知:|Z|=|x+yi|=1求表示复数x+yi的点的轨迹.
教学后记:
板书设计:
一、复数的向量表示:三、复数模的几何意义
二、复数的模例2
例1
探究活动
已知要使,还要增加什么条件?
解:要使,即由此可知,点到两个定点和的距离之和为6,如把看成动点,则它的轨迹是椭圆.
关键词: 圆锥曲线 光学性质 简单应用
某次考试后的集体改卷中,我们备课组成员对于该考卷中的某道题目的处理产生了争议.
填空题13题:求函数y=sin(2x+)的单调递增区间.
学生给出的答案有主要有两种写法:
备课组老师有的认为(1)的写法比较准确,有的则认为两者都可作为正确答案.
必修一在第1章第2节:函数及其表示中,通过集合给出区间的概念,所以区间是集合,是一个数集,但区间必须指的是一个连续的范围,所以区间并不等同于集合,或者说,并不等同于数集.在很多情况下,区间与数集具有相同的效果,可以相互转化表示某一个范围,如:
例1:[1,5]={x/1≤x≤5},(1,5)={x/1
例2:函数f(x)=ln(x-6x+5)的定义域:既可以表示成(-∞,1)∪(5,+∞),又可以表示成{x/x5}.
例3:函数f(x)=lg(x-1)既可以说在(1,+∞)递增,又可以说在{x/x>1}上是增函数.
那么例1中的单调区间的两种表示方法是否都正确呢?
笔者认为,第一种表示方法指的是多个区间,当k取不同的整数的时候,表示不同的区间,如:k=-1表示区间,k=0表示区间,k=1表示区间,即k取遍所有整数时的各个区间,即它不等同于这些集合的并集.而第二种表示法方法指是多个区间的并集,即:…∪∪…即k取遍所有整数时所得区间的并集.
再者,我们了解,对于函数的单调性,只能在定义域的某个区间上进行研究,不能将单调性相同的区间并起来,如函数f(x)=的单调区间,学生容易误写成:(-∞,0)∪(0,+∞),而正确的写法为:函数的单调区间为(-∞,0)和(0,+∞),它指的是函数有两个单调递增区间.所以例1中的函数的单调区间应该是有无数多个,而不是取并集为一个区间.这个问题其实在必修四中正切函数的性质也有所体现:“正切函数在开区间(-+kπ,+kπ),k∈Z内都是增函数.”认真观察我们便会发现,对于单调区间,课本是有给出严谨的表示的,即三角函数中的单调区间基本都会用区间表示.
所以事实上,数集和区间并不能等同,数集和区间在其他地方也是有区别的.例如:对于离散的数集,可用集合{1,2,3,4}表示,但不能用区间表示若给定集合{x/m-1
所以数集和区间并不能简单地等同,它们之间存在区别,我们必须认清它们的区别并正确使用,例如:函数y=lg(sinx)的定义域正确表示则应该为{x/2kπ
总之,区间的概念是在集合的基础上给出的,在很多情况下区间和集合可以相互转化.
其实在本题中,集合与区间的区别仅仅在于后面的k∈Z,比如区间(,π)与集合{x/
数学是一门非常严谨的学科,数学教师应该在教学中处处体现其严谨性,这样学生才能在学习中逐步形成严密的思维方式,在教学中不能模棱两可,是就是,不是就不是,容不得半点纰漏,要注意各种细节的不同.在高中数学教学过程中,其实还有很多细节需要我们注意,比如此题学生所写答案除了本文开头两种外,还有部分学生的答案为(3){x/k・180°-75°
对于这个答案,备课组老师们大多数认为,因为函数的定义域必须是数集,而单调区间是定义域的一个子集,所以必须为数集,那么就必须用弧度制表示,所以这类答案肯定不正确.那么,事实真是如此吗?
必修一是在两个非空数集的基础上给出函数的概念,于是,在高中教学中,有很多老师在给学生介绍弧度制时都以为了使研究三角函数时,使得角与实数集一一对应为理由,但真的是如此吗?事实上,弧度制和角度制是度量角的两种不同的方式,而其实,无论是角度制还是弧度制,都能使得每个角都有唯一的实数与之对应,也就是说,无是有角度制还是弧度制,都能够建立三角函数,三角函数的定义域及单调区间也能用角度制表示,所以笔者认为,第(4)种答案也是可以的.那么到底为什么有了角度制还要引入弧度制呢?我们知道角度制为六十进制,而弧度制是用长度单位度量角,是一类十进制的实数,弧度制的定义巧妙地将长度单位和角度单位统一起来,这给研究三角函数带来很大的便利.而且在必修四给出三角函数的定式义时:是一个任意角,它的终边与单位圆交于点P(x,y),那么,y叫做α的正弦,即sinα=y,这个时候,y的单位为长度单位,若此时,角a采用角度制,则它们的单位无法统一,而弧度制恰恰解决了这个问题.