首页 > 文章中心 > 生物信息学

生物信息学

生物信息学范文第1篇

关键词:信息技术,生物教学,课程改革

作者:任春红

二十一世纪是生命科学高速发展的时代,生命科学对人类的影响之大将不可预料。生物学是生命科学的基础课程,生物老师在这次教育教学改革中应该积极探索,大胆尝试。教师在教学中,必须深入研究和恰当地设计、开发、运用信息,从努力实践到积极创新,开发制作适用于课堂教学的优质教育资源,优化课堂教学,力求最大限度地提高教学效率,学生能够应用现代信息技术更好地掌握生物学知识,获取更多的生物学信息。今天的教师,不能满足于一支粉笔、一张利口,博闻强记、引经据典的传统教学,而应不断努力、不断探索、不断尝试将生物课堂教学与信息技术达到有效整合。所谓整合就是根据学科教学需要,充分发挥计算机的工具性功能,使计算机溶入学科教学中,从而提高教学质量,促进教学改革,培养具有创造能力和创新精神的中学生。整合并非是计算机与生物学科的简单结合,也并不能够解决生物教学中的所有问题,而是从实际出发,寻找最佳结合点,突出教学重点,解决难点,探索规律,启发思维,从而提高生物学科的教育教学质量。但是现在的一些老师和学生对于信息技术与生物学科教学的整合认识存在着很多误区:有的认为直接照搬网络上下载的课件上课就是整合课了;有的认为课堂上只要用了多种电教媒体就是整合课;有的认为在机房上课,网络环境下上课,就是整合课。所以在此,我们有必要先搞清楚整合和信息技术,信息与电脑的概念。整合是指可联合实施以确保实现共同成果的。我认为生物学科课程整合的关键是教师的教学艺术,体现在有效应用学科技术、信息技术,提高学生的研究学习素质,更好地达到生物课程学习的目标。而信息技术(InformationTechnology,简称IT),是主要用于管理和处理信息所采用的各种技术的总称。它主要是应用计算机科学和通信技术来设计、开发、安装和实施信息系统及应用软件。它也常被称为信息和通信技术(InformationandCommunicationsTechnology,ICT),主要包括传感技术、计算机技术和通信技术。所以整合和信息技术之间是不能画等号的。

一般来说,信息是指与客观事物相联系,反映客观事物的运动状态,通过一定的物质载体被发出、传递和感受,对接受对象的思维产生影响并用来指导接受对象的行为的一种描述。从本质上说,信息是反映现实世界的运动、发展和变化状态及规律的信号与消息。信息包括以下几个要件:信源、语言符号、载体、信道、信宿、媒介。而电脑是一种利用电子学原理根据一系列指令来对数据进行处理的机器。因此,信息技术也不等于电脑技术,它的范围要宽广得多。

生物学是一门实验科学。没有观察和实验手段的不断更新,生物学就不可能取得如此辉煌的成就。要提高生物教学,就需要丰富的教学资源以及教学手段要直观、生动。信息技术的发展不仅为生物科学的发展提供了动力,而且改变了生物教学。

一、信息技术丰富了生物教学资源

信息技术具有保存信息和传递信息的功能,也给新的发现和新的信息宣传提供了平台。信息技术改变了原来以单一纸质资料(如:书本)为依托的教学,而成为以光碟,网络信息为资源的教学。许多优秀的生物课件、试卷、教案,以及优秀教师的教学经验、先进的教育教学观念,科学的学习方法等都可以在网络中找到。教师教学中可利用的资料更多、更精、更好。同时信息技术也为教师间交流经验,发布教学研究成果等提供了平台。这些丰富了生物教学资源,也优化了生物教学资源。信息技术为提高生物教师教学能力和教学质量创造了条件。

通过信息技术可查找到许多与生物教学有关的知识。如在讲解高中生物第一册第二章生命活动的基本单位――细胞时,可在网络上找到许多细胞的课件及动、植物亚显微结构模式图,细胞膜的结构图和动画,细胞器的结构图,相关练习,以及优秀教师的教案,等等。这些信息为制作好的课件,制订好的教学计划提供了丰富的材料。

二、信息技术与生物课堂教学的整合要有助于培养学生的创新精神和实践能力

在课堂教学活动中可以学生的自主探究学习为中心,充分利用现代信息技术和信息资源,改革教师教的方式与学生学的方式。信息技术与生物课堂教学的整合,要从传统的课件制作和表演型阶段,发展到师生在学习信息技术中应用信息技术。教师在教学中要注意充分利用网络资源和各类信息资源来辅助学生的自主和合作学习,发挥信息技术对学习方式变革的推动作用。信息技术与生物课堂教学的整合,要与生物学科课程体系的改革、学科课程的教学内容、方法和手段的改革相结合,为生物学科课程适应信息化时代的调整提供平台。例如,应用现代信息技术为生物学科课程的更新建设网络化资源库,在教学中应用现代信息技术产品,为学生在探究学习中提供信息技术工具和环境等。

三、信息技术改变生物教学中的知识呈现

(一)信息技术使生物教学的知识呈现不受时间的限制。

学生可以通过网络找到教师在课堂中讲解的图片和文字知识,促使学生自主学习。教师可将课堂中的信息来源告知学生,或把教案、课件通过学校网站或“博客”等发布在网上,学生可以随时浏览。

(二)信息技术使知识呈现更直观、更完整。

应用Powerpoint、Authorware、flash等软件制作多媒体课件或下载课件,知识呈现时,让学生能观知识形,听知识声和看知识动。在讲解高二生物人类遗传病这节,人染色体变异遗传病――猫叫综合症时,应用多媒体课件可让学生听婴儿的啼哭声、看婴儿啼哭的动作,使知识形象、生动和直观。同时,在讲解无法用常规方法观察到的生物现象时,可以制作动画课件让学生一目了然。比如呈现细胞膜的流动性时,可制作出细胞膜的磷脂分子和蛋白质分子运动的Flash动画。在讲解植物种子萌发的过程和动物胚胎发育过程(受精卵胚泡囊胚原肠胚幼体)时,学生不可能通过观察到连续的发育种子或动物胚胎发育过程,但可通过制作动画课件让学生在几分钟内观察到完整的发育过程,使知识呈现更直观、更完整。

四、信息技术也是实现因材施教的有效措施

因材施教是教育教学的重要原则,要实现人的全面发展、人尽其才,教师要多与学生交流,了解学生之所想、学生之所思及学生的优、缺点,才能根据学生差异采取相应教学措施。信息技术为师生交流提供了新的平台,教师和学生不需要面对面,可通过E-mail、QQ聊天或“博客”等方式交流。学生可向老师提问或与老师讨论,解决学习中的困难。教师也可通过E-mail、QQ聊天、“博客”等方式辅导、关心和了解学生。这样教师在课堂教学中能更容易地根据学生的情况而因材施教。

生物信息学范文第2篇

一、正在出现的技术

Klingler(Lncytepharmaceuticals,PaloAlto,CA,USA)强调基因组学正推动制药业进入信息时代。随着不断增加的序列、表达和作图数据的产生,描述和开发这些数据的信息工具变得对实现基因组研究的任务至关重要。他谈到了Incytepharmaceuticals对大规模基因组数据和生物信息学的贡献。

Lipshutz(Affymetrix,Santaclara,CA,USA)描述了一种利用DNA探针阵列进行基因组研究的方法,其原理是通过更有效有作图、表达检测和多态性筛选方法,可以实现对人类基因组的测序。光介导的化学合成法被应用于制造小型化的高密度寡核苷酸探针的阵列,这种通过软件包件设计的寡核苷酸探针阵列可用于多态性筛查、基因分型和表达检测。然后这些阵列就可以直接用于并行DNA杂交分析,以获得序列、表达和基因分型信息。Milosavljevic(CuraGen,Branford,CT,USA)介绍了一种新的基于专用定量表达分析方法的基因表达检测系统,以及一种发现基因的系统GeneScape。为了有效地抽样表达,特意制作片段模式以了解特定基因的子序列的发生和冗余程度。他在酵母差异基因表达的大规模研究中对该技术的性能进行了验证,并论述了技术在基因的表达、生物学功能以及疾病的基础研究中的应用。

二、基因的功能分析

Overton(UniversityofPennsylvaniaSchoolofMedicine,Philadelphia,PA,USA)论述了人类基因组计划的下一阶段的任务——基因组水平的基因功能分析。这一阶段产生的数据的分析、管理和可视性将毫无疑问地比第一阶段更为复杂。他介绍了一种用于脊椎动物造血系统红系发生的功能分析的原型系统E-poDB,它包括了用于集成数据资源的Kleisli系统和建立internet或intranet上视觉化工具的bioWidget图形用户界面。EpoDB有可能指导实验人员发现不可能用传统实验方法得到的红系发育的新的药物靶,制药业所感兴趣的是全新的药物靶,EpoDB提供了这样一个机会,这可能是它最令人激动的地方。

Sali(Rockefelleruniversity,NewYork,NY,USA)讨论了同源蛋白质结构模建。比较蛋白质模建(comparativeproteinmodeling)也称为同源模建(homologymodeling),即利用实验确定的蛋白质结构为模式(模型)来预测另一种具有相似氨基酸序列的蛋白质(靶)的构象。此方法现在已经具有了足够的精确性,并且被认为效果良好,因为蛋白质序列的一个微小变化通常仅仅导致其三维结构的细微改变。

Babbitt(UniversityofCalifornia,SanFrancisco,CA,USA)讨论了通过数据库搜索来识别远缘蛋白质的方法。对蛋白质超家族的结构和功能的相互依赖性的理解,要求了解自然所塑造的一个特定结构模板的隐含限制。蛋白质结构之间的最有趣的关系经常在分歧的序列中得以表现,因而区分得分低(low-scoring)但生物学关系显著的序列与得分高而生物学关系较不显著的序列是重要的。Babbit证明了通过使用BLAST检索,可以在数据库搜索所得的低得分区识别远缘关系(distantrelationship)。Levitt(Stanforduniveersity,PaloAlto,CA,USA)讨论了蛋白质结构预测和一种仅从序列数据对功能自动模建的方法。基因功能取决于基因编码的蛋白质的三级结构,但数据库中蛋白质序列的数目每18个月翻一番。为了确定这些序列的功能,结构必须确定。同源模建和从头折叠(abinitiofolding)方法是两种现有的互为补充的蛋白质结构预测方法;同源模建是通过片段匹配(segmentmatching)来完成的,计算机程弃SegMod就是基于同源模建方法的。

三、新的数据工具

Letovsky(JohnshopkinsUniversity,Baltimore,MD,USA)介绍了GDB数据库,它由每条人类染色体的许多不同图谱组成,包括细胞遗传学、遗传学、放射杂交和序列标签位点(STS)的内容,以及由不同研究者用同种方法得到的图谱。就位置查询而言,如果不论其类型(type)和来源(source),或者是否它们正好包含用以批定感兴趣的区域的标志(markers),能够搜索所有图谱是有用的。为此目的,该数据库使用了一种公用坐标系统(commoncoordinatesystem)来排列这些图谱。数据库还提供了一张高分辨率的和与其他图谱共享许多标志的图谱作为标准。共享标志的标之间的对应性容许同等于所有其它图谱的标准图谱的分配。

Markowitz(LawrenceberkeleyLaboratory,Berkeley,CA,USA)讨论了分布式数据库与局部管理的关系,以及用基于工具的方法开发分子生物学数据库(MDBs)的问题。许多方案当前正在促进搜索多种不同来源MDBs的数据,包括建立数据仓库;这要求对各种MDBs的组合有一种全局观,并从成员MDBs中装填数据入中心数据库。这些方案的主要问题是开发整体视图(globalviews),构建巨大的数据仓库并使集成的数据库与不断发展中的成员MDBs同步化的复杂性。Markowitz还讨论了对象协议模型(objectprotocolmodel,OPM),并介绍了支持以下用途的工具:建立用于文本文件或者关系MDBs的OPM视图;将MDBs作成一个数据库目录,提供MDB名称、定位、主题、获取信息和MDB间链接等信息;说明、处理和解释多数据库查询。Karp(SRIinternational,MenloPark,CA,USA)解释了Ocelot,一种能满足管理生物学信息需求的面向对象知识陈述系统(一种面向对象系统的人工智能版)。Ocelot支持略图展开(schemaevolution)并采用一种新的最优化并行控制机制(同时进行多项访问数据的过程),其略图驱动图形编辑器提供了交互式浏览和编辑功能,其注释系统支持数据库开发者之间的结构通讯。

Riley(MarinebiologicalLaboratory,WoodsHole,MA,USA)在讨论大肠杆菌蛋白质的功能同时,特别提到了GPEC数据库,它包括了由实验确定的所有E.coli基因的功能的信息。该数据库中最大比例的蛋白质是酶,其次则为转运和调控蛋白。

Candlin(PEappliedBiosystems,FosterCity,CA,USA)介绍了一种新的存储直接来自ABⅠPrismdNA测序仪的数据的关系数据库系统BioLIMS。该系统可以与其它测序仪的数据集成,并可方便地与其它软件包自动调用,为测序仪与序列数据的集成提供了一种开放的、可扩展的生物信息学平台。

Glynais(NetGenics,Cleveland,OH,USA)认为生物信息学中最关键的问题之一是软件工具和数据库缺乏灵活性。但是,软件技术的发展已得到了其它领域如金融业和制造业的发展经验的借鉴,可以使来自不同软件商的运行于各种硬件系统的软件共同工作。这种系统的国际标准是CORBA,一种由250多个主要软件和硬件公司共同合作开发的软件体系。联合使用CORBA和Java可以开发各种通过一个公用用户界面访问任何种类的数据或软件工具的网络应用软件,也包括生物信息学应用软件。Overton不同意Glynias的这种想法,他强调说CORBA仅对软件集成有用,不兼容的数据库软件可能是计算生物学所面临的最困难问题,一些制药公司和数据库仓库最近资助了一项用OCRBA链接不同的数据库的计划[2,3]。

四、制药先导的发现

Burgess(Sturcturalbioinformatics,SanDiego,CA,USA)讨论了填补基因组学和药物设计之间鸿沟的蛋白质结构中的计算问题。在缺乏主要疾病基因或药物靶的精确描述数据的情况下,药物设计者们不得不采用大规模表达蛋白质筛选方法;而结构生物信息学则采用一种更为实用有效的计算方法直接从序列数据中确定靶蛋白质的活性位点的精细结构特征,它利用一种集成专家系统从现实的或虚拟的化学文库中进行迅速的计算筛选,可以达到一个很大的规模。

Elliston(Genelogic,Columbia,MD,USA)讨论了治疗药物开发中发现新的分子靶的过程,着重讨论了基因发现方法。他认为,随着日益临近的人类基因组测序的完成,几乎全部基因的特征将在序列水平得到揭示。但是,对基因的认识将有赖于更多的信息而不仅仅是序列,需要考虑的第一类信息是转录表达水平信息,而Genelogic公司的GeneExpress就是一个由mRNA表达谱、转录因子位点、新基因和表达序列标签组成的数据库。

Liebman(Vysis,Downessgrove,IL,USA)介绍了Vysis公司开发的计算和实验方法,这些主法不仅用于管理序列数据,而且被用于以下用途:分析临床数据库和自然—突变数据库;开发新的算法以建立功能同源性(区别于序列同源性)模拟生物学通路以进行风险评估;药物设计的靶评估;联系复杂的通路特性以便识别副作用;开发疾病发展的定性模型并解释临床后果。

随着发现的新基因的日益增多,这个问题显得格外重要:基因的功能是什么?Escobedo(Chirontechnologies,Emeryville,CA,USA)提出了这个问题的一种方法:将分泌蛋白质的基因的功能克隆与筛选这些克隆(可能的药物靶)结合起来。在这种方法中,在微粒体cDNA文库池中进行体外翻译避免了劳动密集的克隆、表达和纯化步聚,对文库池中的翻译产物在细胞水平进行筛选,测试其在细胞增殖和分化中的作用。例如,在用这种方法识别的111个克隆中,56个属于已知的分泌蛋白质,25个为膜相关蛋白,另外30个功能未知,可能是新的蛋白质。一种相似的方法在转移到小鼠模型系统中的基因传导载体中构建分泌蛋白质的cDNA文库来克隆特定的功能基因。

Ffuchs(Glaxowellcome,ResearchTrianglePark,NC,USA)讨论了生物信息学更为广义的影响:它不仅影响到新药物靶基的发现,还对改善药物开发的临床前期和临床期的现状极具重要性。众所周知,涉汲数以千计病人的临床试验(可能是药物开发最为花钱的部分)的设计不论多么仔细,也不能为正确的药物选择正确的病人。而在基因组水平划分病人群体的方法可以大大改善发现新药的效率。Fuchs介绍了一种将病人的基因型和表型标志结合起来以改善临床前期和临床期药物开发过程的系统GeneticinformationSystem.他强调将遗传学和生物信息学数据同化学、生物化学、药理学和医学数据连接起来的集成信息管理和分析方法是极其重要的。

Green(HumanGenomeSciences,Rockville,MD,USA)介绍了他的测序工作中采用的数据管理工具。基于EST的测序方法所面临的挑战是,在对几百个cDNA克复测序之后,产生的数据堆积如山。由于大多数人类基因都是用这种方法发现并在么有数据库中分类编排的,面临的识别开放读框、重叠序列的重叠图谱、组织特异表达和低丰度mRNA基因的任务是令人生畏的。HumangenomeSciences公司开发了一些可用户化数据库工具,在同一个数据库中可包括以下功能:WWW上访问和检索数据,序列拼接,临视潜在药物靶基因的研究进展等。这些能够管理多项任务——从注释基因序列到成功开发基因产物进入药物发现的流程——的软件工具,极其可望从一种基于基因组知识的药物发现方法中得到新的药物靶。

Summer-Smith(Base4bioinformatics,Mississauga,Ontario,Canada)描述了一种相关的策略。药物发现阶段中所要求的软件工具的任务是多样化的,要能注释基因,并阐明它的生理和病理功能及其商业潜质。对这样多种来源的信息的集成与分析,在派生的、项目取向的数据库(project-specificdatabase,PSD)中可以很好完成。由于项目贯穿于发现到开发全过程,其间又不断加入背景的成员,PSD在项目的管理与发展中成为一种关键性的资源。

按照Smith(Bostonuniversity,Boston,MA,USA)的观点[2],我们并不需要更快捷的计算机或更多的计算机科学家,而是需要更的生物学家和生物化学家来解释序列的功能。这对有些软件或硬件专家来说是个打击,但生物学系统的复杂性是令人生畏的,并且对基因功能的认识可能需要生物学方法和计算方法的结合。探索基因的功能很可能要花费生物学家们数十年的时间,本次会议表明没有任何单一的方法可以得出一个答案;但是,将计算生物学同大规模筛先结合起来识别一种化学靶物(hit)是一种产生化学工具来探索基因功能的方法,这些化学工具接下来就可以用作理解基因功能的“探针”。这种方法在Butt(GeneTranscriptionTechnologies,Philadelphia,PA,USA)的描述中,既是一种检查基因功能的简单方法,也是为潜在的药物靶发现化学先导物的简单方法,他描述了一种可以在酵母中重建人类基因功能的酵母大规模筛选系统。在此系统中,可以迅捷地在一个化学文库中发现配基。这种技术的重要特征是它不仅仅是发现一种药物靶的配基的筛板(screen),相反,由于该系统的高速度,它也是发现先导靶基因的一种筛板。过去,世界上的制药公司通常在某一时间内仅能对有限数目(约20多个)的药物靶基因进行工作,鉴于此,我们需要根本不同的方法如基因组学来打开通向“新”生物学的通路。由于机器人和合成化学的进步,药物发现中最关键的问题不再是得到一种先导化合物(leadcompound),而是得到导向靶基因。此次会议为从计算和实验方法中发展出的新生物学迈出很好的一步。

参考文献

1LimHA,BatttR.TIBTECH,1998;16(3)):104

生物信息学范文第3篇

关键词: 生物信息学 研究生教学 实践

1.引言

生物信息学(bioinformatics)是一门新兴的交叉学科,生物学与医学、数学、计算机科学是其中三个主要组成部分。生物信息学作为跨越生命科学和信息科学两大热点领域的学科,拥有蓬勃的生命力。面对人类基因组计划所产生的庞大的分子生物学信息,生物信息学的重要性已越来越突出,它无疑将会为生命科学的研究带来革命性的变革。[1][2]国内外对生物信息学的人才需求也在激增。

目前,生物信息学在我国尚处于起步阶段,因为要进行生物信息学的研究,对人员要求很高,需要深厚的生物大分子结构和功能方面的背景知识,需要扎实的应用数学或统计学知识,还需要精通计算机,至少得具备三者之二。但实际情况是大部分从事生物学研究的人不熟悉计算机,而从事计算机科学的人员多数又缺乏对生物学的了解。尽管如此,生物信息学的教育在国内外高等院校及科研机构越来越普及。据不完全统计,我国超过30个高校或科研机构开设生物信息学专业课程。[3]这些研究与教育一般分散在多个系所属的多个专业中,如生命科学院(北京大学等)、计算机学院(哈尔滨工业大学等)、理学院(天津大学等),我校是由计算机学院开设全校公共课。不同学校根据自身的情况,在开设生物信息学这门课时,侧重点都不一样。如果由医学院的教师授课,则侧重点可能在致病基因的研究方面,[4]计算机专业教师授课则可能侧重于数据库的管理、查询等方面,[5]理学院的教师授课则可能侧重于生物信息学中的数学问题。笔者是计算机专业出身的,研究方向为图像处理与模式识别,所以主要从计算机和数学的角度去授课。另外,研究生教学又与本科生教学[6]不同,研究生教学更加应该注重培养学生的主动学习意识和综合能力。笔者将教学实践中的心得进行了初步的总结,以供商榷。

2.注重培养学生的学习兴趣

从培养学生的学习兴趣出发,在课堂教学过程中,充分利用丰富的网络资源,如图像、视频等。比如在介绍模式生物时,可以给出各种模式生物的图像;在介绍各种各样的生物数据库时,可以在课堂上现场上网登陆数据库,演示和介绍各个数据库的特点和使用方法等。研究生不同于本科生,本科生可能比较习惯于教师的灌输性教学,而研究生教学更加鼓励学生主动自觉地学习。这从“研究”一词的英文解释“re-search”――再(“re-”)探索(“search”)中也可以看出。教师在研究生学习过程中主要起引路的作用,而不可能手把手带着学生研究。生物信息学更是如此,它是一门新兴的交叉学科,很多理论和研究内容还不成熟,需要科学工作者不断地探索。因此,通过生动形象的启发式课堂教学,培养学生的学习兴趣,对学生以后的进一步研究有着重要的作用和意义。

3.注重培养学生的综合素质

在生物信息学的上课过程中安排几次学生的课堂报告。具体做法是:由教师或学生在国外重要期刊(如Bioinformatics)或会议上找与学生自身的研究方向比较相近的生物信息学方面的最新文献,然后几个学生一组共同针对某几篇文献进行阅读、理解,最后以报告的形式跟大家一起交流和讨论。在这个过程中,可以培养学生的如下几个方面的能力:

(1)搜寻资料的能力。现在网络非常发达,网络资源也非常丰富,如何从纷繁复杂的网络资源中找到自己所需的资料不是一件容易的事。学生可以通过学校购买的数据库进行查找适合自己的文献资料,也可以通过搜索引擎进行查找。通过这个过程,学生可以了解有哪些数据库可以利用,哪些网站资源比较丰富,以及选择什么关键词进行查找比较有效,等等。

(2)阅读外文文献的能力。学生在本科阶段一般没有读外文文献的习惯,而进入研究生学习阶段,为了了解和研究国际前沿领域,就必须阅读大量外文文献,毕竟国外的科技实力在很多方面还是处于领先位置的。给学生指定几篇优秀的外文文献进行阅读和理解,可以一定程度上锻炼学生阅读外文文献的能力。因为要想真正理解文献的内容,就必须对文献进行仔细认真的阅读和研究。

(3)团结协作的能力。每个课堂报告都是由几个学生共同参与完成的,在这过程中有组织协调和分工的问题,这需要大家共同努力,团结协作。团结协作在当今社会越来越被推崇,所以培养学生团结协作的能力对于他们以后进入社会很有帮助。从实际执行的情况看,效果还不错。比如有的学生数学基础好,他就负责理解文献中的公式和算法部分;有的学生计算机能力比较强,他就负责编程实现、课件制作等。

(4)口头表达的能力。课堂报告的最后陈述和讨论可以锻炼学生的口头表达能力。有的学生平时很少有作报告的机会,所以口头表达的能力得不到锻炼。本课程提供给学生一次口头表达能力锻炼的机会,让学生体会到如何组织报告内容、如何把自己理解的内容介绍给听众是比较有效的,是容易被大家理解和接受的。

4.理论与实践相结合,鼓励交叉性研究

为了做到学有所用,笔者从每个学生自身的研究方向出发,为每个学生指定与其研究方向相关的生物信息学方面的最新文献进行阅读和理解。鼓励学生进行跨学科切交叉性研究,将所学的生物信息学知识应用于实际的研究中,或者利用已掌握的知识促进生物信息学的研究。比如课堂上的计算机学院的学生有研究图像处理与模式识别的,就给他们安排一些生物图像处理、基因识别等方面的文献。这种交叉性的学习和研究,有可能激发学生的灵感,获得比较大的创新性成果。

5.结语

生物信息学课程教学的实践表明,学生经过这门课程的学习,学到了一定的内容,如对生物信息学这门课有了比较清楚的了解和认识、综合素质得到了一定的提高、找到了一些适合自己的研究切入点等。总的来说,教学效果不错,但还需要进一步探索,进一步完善。

参考文献:

[1]张阳德.生物信息学[M].北京:科学出版社,2005:1-15.

[2]郝柏林,张淑誉.生物信息学手册[M].上海:上海科学技术出版社,2002:1-10.

[3]许忠能.生物信息学[M].北京:清华大学出版社,2008:8-17.

[4]曹骥,黎丹戎.浅谈医学生物信息学的教学模式[J].广西医科大学学报,2007,(24):122-123.

生物信息学范文第4篇

关键词:生物信息学;教材;师范院校

20世纪80年代末以来,生物信息学以惊人的发展速度,获得了很多突破性成就,正日益成为生命科学在21世纪发展的核心内容。对于未来生物科学中坚力量的现代生物科学工作者而言,掌握生物信息学的相关知识尤为重要。

作为一门新兴的课程,生物信息学课程在全国很多高等院校都已经开设,并进行了一些卓有成效的探索和改革。我们结合自身的教学实践和相关学校的教学现状,对师范院校生物信息学课程教学内容、师资力量、教学模式和方法、跨学科合作、教学实践实施情况等方面的现状进行了积极分析和思考。目前,师范院校生物信息学教学的现状如下。

一、教学内容陈旧、教学资源缺乏

生物信息学是一门新兴的学科,在高等院校开设时间较晚,我国对生物信息学专业精品课程的建设方面投入不够,成熟的生物信息学教学大纲、教案、多媒体课件、教学视频和习题等教学资源稀少。目前,市场上也缺乏相关的生物信息学教学多媒体课件和音像制品辅导材料等相关产品,造成生物信息学教学资源匮乏的现状。

目前师范院校所用教材大多数是徐程主编的《生物信息与数据处理》,蒋彦等编著的《基础生物信息学及应用》等几种不同版本的教材。这些教材在知识性、科学性和系统性方面还行,但是在教学内容的新颖性、时效性和实践性以及生物相关背景的介绍和对师范院校的适用性等方面有所欠缺。生物信息学的知识日新月异,新的数据库、新的软件、新的算法层出不穷,而生物信息学的课堂往往不能及时地将最新进展呈现给学生,导致课堂内容陈旧,不利于学生的发展和对生物信息知识的合理掌握,从而影响了生物信息学教学的质量。

二、师资力量缺乏

生物信息学是一门新兴的交叉学科,需要熟练掌握计算机与生物学知识的老师来授课。然而,实际上,由于缺少生物信息学的专业教师,教授该学科的教师多为生物学其他课程兼任,这些老师往往缺乏专门的生物信息学训练,在知识的传授和应用方面存在欠缺。与生物信息学教学要求存在着较大的差距,不能很好地满足教学大纲的要求。另外,师范院校通常将生物信息学作为选修课来开设,该课程在专业建设和人才培养方案中的地位偏低,造成相关部门对师资培养不够重视。

三、教学模式和方法落后

由于生物信息学课程涉及大量的数据库和软件知识,教师普遍采用多媒体教学。而多媒体课件的容量通常很大,学生忙于笔记,难以把握重难点。同时,幻灯片展示的知识点犹如放电影一般一闪而过,学生没有足够的时间思考和消化,跟不上教师的进度。教师进行多媒体教学时,往往是一堂课上从头讲到尾,语调缺乏抑扬顿挫,没有起伏,学生很容易昏昏欲睡。因此,教师虽然使用的是先进的教学工具,采用模式的却是传统的灌输式教学,只管埋头照本宣科,不管学生接收领悟多少。学生为了达到期末考试标准,只顾死记硬背,这样的教育让学生失去创新精神和主动思考的能力,失去对生物信息课程的兴趣。

四、缺乏与相关学科的合作交流

生物信息学实际上是生物学与计算机科学的交叉学科。然而一般高校往往只在生命科学学院开设生物信息学,由生物学老师来担任授课老师。由于对计算机科学知识的缺乏,导致生物专业教师对生物信息学课程很难深入开展;另一方面,计算机科学专业由于没有开设生物信息学课程,使学生不能了解到生物信息学的重要性,以及如何使计算机科学更快更好地发挥其在生物信息学中的作用。总的来说,生物信息学课程的建设欠缺相关学科的协作,不能有效地整合资源,不利于培养复合型人才。

五、缺乏实践教学内容

现有的生物信息学课程也有一些实践内容,但实践课时数少,内容相对简单,缺乏系统完善的实践过程。教师为学生讲授具体知识时,通常只通过多媒体课件演示操作,并没有为学生设置具体的动手操作步骤。使得学生对信息反馈迟钝,印象不深刻,不容易掌握方法。生物信息学实践教学并不需要价格昂贵的实验设备,只需要一网的电脑和一些相关的分析软件便可以进行实验。然而,目前的状况是,生物信息学课程中真正开展实践性教学的内容少之又少。

生物信息学的学习是一个长期积累的过程,教学水平的提高也需要在大量的教学实践中不断总结和完善。我们通过分析发现,在师范院校生物信息学教学中仍存在很多问题,其原因是多方面的,需要教学工作者进一步深入探讨并提出切实可行的策略。

参考文献:

[1]汤丽华.浅谈大学本科生物信息学课程建设与教学[J].科技

信息,2010(1).

[2]贾小平,孔祥生.生物信息学实践教学初探[J].陕西教育,

2010(3).

[3]军.农学专业生物信息学课程教学改革探析[J].现代农

业科技,2010(5).

[4]郝新保.充分利用网络资源开展生物信息学教育[J].中国医

生物信息学范文第5篇

关键词: 生物信息学 农业研究领域 应用

“生物信息学”是英文单词“Bioinformatics”的中文译名,其概念是1956年在美国田纳西州Gatlinburg召开的“生物学中的信息理论”讨论会上首次被提出的[1],由美国学者Lim在1991年发表的文章中首次使用。生物信息学自产生以来,大致经历了前基因组时代、基因组时代和后基因组时代三个发展阶段[2]。2003年4月14日,美国人类基因组研究项目首席科学家Collins F博士在华盛顿隆重宣布人类基因组计划(Human Genome Project,HGP)的所有目标全部实现[3]。这标志着后基因组时代(Post Genome Era,PGE)的来临,是生命科学史中又一个里程碑。生物信息学作为21世纪生物技术的核心,已经成为现代生命科学研究中重要的组成部分。研究基因、蛋白质和生命,其研究成果必将深刻地影响农业。本文重点阐述生物信息学在农业模式植物、种质资源优化、农药的设计开发、作物遗传育种、生态环境改善等方面的最新研究进展。

1.生物信息学在农业模式植物研究领域中的应用

1997年5月美国启动国家植物基因组计划(NPGI),旨在绘出包括玉米、大豆、小麦、大麦、高粱、水稻、棉花、西红柿和松树等十多种具有经济价值的关键植物的基因图谱。国家植物基因组计划是与人类基因组工程(HGP)并行的庞大工程[4]。近年来,通过各国科学家的通力合作,植物基因组研究取得了重大进展,拟南芥、水稻等模式植物已完成了全基因组测序。人们可以使用生物信息学的方法系统地研究这些重要农作物的基因表达、蛋白质互作、蛋白质和核酸的定位、代谢物及其调节网络等,从而从分子水平上了解细胞的结构和功能[5]。目前已经建立的农作物生物信息学数据库研究平台有植物转录本(TA)集合数据库TIGR、植物核酸序列数据库PlantGDB、研究玉米遗传学和基因组学的MazeGDB数据库、研究草类和水稻的Gramene数据库、研究马铃薯的PoMaMo数据库,等等。

2.生物信息学在种质资源保存研究领域中的应用

种质资源是农业生产的重要资源,它包括许多农艺性状(如抗病、产量、品质、环境适应性基因等)的等位基因。植物种质资源库是指以植物种质资源为保护对象的保存设施。至1996年,全世界已建成了1300余座植物种质资源库,在我国也已建成30多座作物种质资源库。种质入库保存类型也从单一的种子形式,发展到营养器官、细胞和组织,甚至DN段等多种形式。保护的物种也从有性繁殖植物扩展到无性繁殖植物及顽拗型种子植物等[6]。近年来,人们越来越多地应用各种分子标记来鉴定种质资源。例如微卫星、AFLP、SSAP、RBIP和SNP等。由于对种质资源进行分子标记产生了大量的数据,因此需要建立生物信息学数据库和采用分析工具来实现对这些数据的查询、统计和计算机分析等[7]。

3.生物信息学在农药设计开发研究领域中的应用

传统的药物研制主要是从大量的天然产物、合成化合物,以及矿物中进行筛选,得到一个可供临床使用的药物要耗费大量的时间与金钱。生物信息学在药物研发中的意义在于找到病理过程中关键性的分子靶标、阐明其结构和功能关系,从而指导设计能激活或阻断生物大分子发挥其生物功能的治疗性药物,使药物研发之路从过去的偶然和盲目中找到正确的研发方向。生物信息学为药物研发提供了新的手段[8,9],导致了药物研发模式的改变[10]。目前,生物信息学促进农药研制已有许多成功的例子。Itzstein等设计出两种具有与唾液酸酶结合化合物:4-氨基-Neu5Ac2en和4-胍基-Neu5Ac2en。其中,后者是前者与唾液酸酶的结合活性的250倍[11]。目前,这两种新药已经进入临床试验阶段。TANG SY等学者研制出新一代抗AIDS药物saquinavir[12]。Pungpo等已经设计出几种新型高效的抗HIV-1型药物[13]。杨华铮等人设计合成了十多类数百个除草化合物,经生物活性测定,部分化合物的活性已超过商品化光合作用抑制剂的水平[14]。

现代农药的研发已离不开生物信息技术的参与,随着生物信息学技术的进一步完善和发展,将会大大降低药物研发的成本,提高研发的质量和效率。

4.生物学信息学在作物遗传育种研究领域中的应用

随着主要农作物遗传图谱精确度的提高,以及特定性状相关分子基础的进一步阐明,人们可以利用生物信息学的方法,先从模式生物中寻找可能的相关基因,然后在作物中找到相应的基因及其位点。农作物的遗传学和分子生物学的研究积累了大量的基因序列、分子标记、图谱和功能方面的数据,可通过建立生物信息学数据库来整合这些数据,从而比较和分析来自不同基因组的基因序列、功能和遗传图谱位置[15]。在此基础上,育种学家就可以应用计算机模型来提出预测假设,从多种复杂的等位基因组合中建立自己所需要的表型,然后从大量遗传标记中筛选到理想的组合,从而培育出新的优良农作物品种。

5.生物信息学在生态环境平衡研究领域中的应用

在生态系统中,基因流从根本上影响能量流和物质流的循环和运转,是生态平衡稳定的根本因素。生物信息学在环境领域主要应用在控制环境污染方面,主要通过数学与计算机的运用构建遗传工程特效菌株,以降解目标基因及其目标污染物为切入点,通过降解污染物的分子遗传物质核酸 DNA,以及生物大分子蛋白质酶,达到催化目标污染物的降解,从而维护空气[16]、水源、土地等生态环境的安全。

美国农业研究中心(ARS) 的农药特性信息数据库(PPD) 提供 334 种正在广泛使用的杀虫剂信息,涉及它们在环境中转运和降解途径的16种最重要的物化特性。日本丰桥技术大学(Toyohashi University of Technology) 多环芳烃危险性有机污染物的物化特性、色谱、紫外光谱的谱线图。美国环保局综合风险信息系统数据库(IRIS) 涉及 600种化学污染物,列出了污染物的毒性与风险评价参数,以及分子遗传毒性参数[17]。除此之外,生物信息学在生物防治[18]中也起到了重要的作用。网络的普及,情报、信息等学科的资源共享,势必会创造出一个环境微生物技术信息的高速发展趋势。

6.生物信息学在食品安全研究领域中的应用

食品在加工制作和存储过程中各种细菌数量发生变化,传统检测方法是进行生化鉴定,但所需时间较长,不能满足检验检疫部门的要求,运用生物信息学方法获得各种致病菌的核酸序列,并对这些序列进行比对,筛选出用于检测的引物和探针,进而运用PCR法[19]、RT-PCR法、荧光RT-PCR法、多重PCR[20]和多重荧光定量PCR等技术,可快速准确地检测出细菌及病毒。此外,对电阻抗、放射测量、ELISA法、生物传感器、基因芯片等[21-25]技术也是未来食品病毒检测的发展方向。

转基因食品检测是通过设计特异性的引物对食品样品的DNA提取物进行扩增,从而判断样品中是否含有外源性基因片段[26]。通过对转基因农产品数据库信息的及时更新,可准确了解各国新出现和新批准的转基因农产品,便于查找其插入的外源基因片段,以便及时对检验方法进行修改。目前由于某些通过食品传播的病毒具有变异特性,以及检测方法的不完善等因素影响,生物信息学在食品领域的应用还比较有限,但随着食品安全检测数据库的不断完善,相信相关的生物信息学技术将在食品领域发挥越来越重要的作用。

生物信息学广泛用于农业科学研究的各个领域,但是仅有信息资源是不够的,选出符合自己需求的生物信息就需要情报部门,以及信息中介服务机构提供相关服务,通过出版物、信息共享平台、数字图书馆、电子论坛等信息媒介的帮助,科研工作者可快速有效地找到符合需要的信息。目前我国生物信息学发展还很不均衡,与国际前沿有一定差距,这需要从事信息和科研的工作者们不断交流,使得生物信息学能够更好地为我国农业持续健康发展发挥作用。

参考文献:

[1]Yockey HP,Platzman RP,Quastler H.Symposium on Information.Theory in Biology.Pergamon Press,New York,London,1958.

[2]郑国清,张瑞玲.生物信息学的形成与发展[J].河南农业科学,2002,(11):4-7.

[3]骆建新,郑崛村,马用信等.人类基因组计划与后基因组时代.中国生物工程杂志,2003,23,(11):87-94.

[4]曹学军.基因研究的又一壮举――美国国家植物基因组计划[J].国外科技动态,2001,1:24-25.

[5]MICHAEL B.Genomics and plantcells:application ofgenomics strategies to arabidopsis cellbiology[J].PhilosTransR Soc Lond B Bio Sci,2002,357(1422):731-736.

[6]卢新雄.植物种质资源库的设计与建设要求[J].植物学通报,2006,23,(1):119-125.

[7]GUY D,NOEL E,MIKE A.Using bioinformatics to analyse germplasm collections [J].Springer Netherlands,2004:39-54.

[8]郑衍,王非.药物生物信息学,化学化工出版社,2004.1:214-215.

[9]俞庆森,邱建卫,胡艾希.药物设计.化学化工出版社,2005.1:160-164.

[10]Austen M,Dohrmann C.Phenotype―first screening for the identification of novel drug targets.Drug Discov Today,2005,10,(4):275-282.

[11]ARUN AGRAWAL,ASHWINI CHHATRE.State involvement and forest cogovernance:Evidence from the IndianHmi alayas.StComp International Developmen.t Sep 2007:67-86.

[12]TANG SY.Institutionsand collective action:Self-governance in irrigation [M].San Francisco,CA:ICSPress,1999.

[13]PUNGPO P,SAPARPAKORN P,WOLSCHANN P,et a.l Computer-aided moleculardesign of highly potentHIV-1 RT inhibitors:3D QSAR and moleculardocking studies of efavirenz derivatives[J].SAR QSAR EnvironRes,2006,17,(4):353-370.

[14]杨华铮,刘华银,邹小毛等.计算机辅助设计与合成除草剂的研究[J].计算机与应用化学,1999,16,(5):400.

[15]VASSILEV D,LEUNISSEN J,ATANASSOV A.Application of bioinformatics in plant breeding[J].Biotechnology & Biotechnological Equipment,2005,3:139-152.

[16]王春华,谢小保,曾海燕等.深圳市空气微生物污染状况监测分析[J].微生物学杂志,2008,28,(4):93-97.

[17]程树培,严峻,郝春博等.环境生物技术信息学进展[J].环境污染治理技术与设备,2002,3,(11):92-94.

[18]史应武,娄恺,李春.植物内生菌在生物防治中的应用[J].微生物学杂志,2009,29,(6):61-64.

[19]赵玉玲,张天生,张巧艳.PCR 法快速检测肉食品污染沙门菌的实验研究[J].微生物学杂志,2010,30,(3):103-105.

[20]徐义刚,崔丽春,李苏龙等.多重PCR方法快速检测4种主要致腹泻性大肠埃希菌[J].微生物学杂志,2010,30,(3) :25-29.

[21]索标,汪月霞,艾志录.食源性致病菌多重分子生物学检测技术研究进展[J].微生物学杂志,2010,30,(6):71-75

[22]朱晓娥,袁耿彪.基因芯片技术在基因突变诊断中的应用及其前景[J].重庆医学,2010,(22):3128-3131.

[23]陈彦闯,辛明秀.用于分析微生物种类组成的微生物生态学研究方法[J].微生物学杂志,2009,29,(4):79-83.

[24]王大勇,方振东,谢朝新等.食源性致病菌快速检测技术研究进展[J].微生物学杂志,2009,29,(5):67-72.

[25]苏晨曦,潘迎捷,赵勇等.疏水网格滤膜技术检测食源性致病菌的研究进展[J].微生物学杂志,2010,30,(6):76-81.

生物信息学范文第6篇

关键词:生物信息学 课堂教学 实验教学 现代教育技术

前言

生物信息学(Bioinformatics)是一门新兴的交叉学科。广义地说,生物信息学从事对生物信息的获取、加工、储存、分配、分析和解释,并综合运用数学、计算机科学和生物学工具,以达到理解数据中的生物学含义的目标[1]。其含义是双重的:一是对海量数据的收集、整理与服务,即管理好这些数据;二是从中发现新的规律,也就是使用好这些数据。以1987年出现Bioinformatics这一词汇为标志,生物学已不再是仅仅基于试验观察的科学。伴随着21世纪的到来,生物学的重点和潜在的突破点已经由20世纪的试验分析和数据积累,转移到数据分析及其指导下的试验验证上来。生物信息学作为一门学科被广泛研究的根本原因,在于它所提供的研究工具对生物学发展至关重要,因此成为生命科学研究型人才必须掌握的现代知识。今天的实验生物学家,只有利用计算生物学的成果,才能跳出实验技师的框架,作出真正创新的研究。现在基因组信息学和后基因组信息学资源已经成了地球上全人类的共同财富。如何获取和利用基因组和后基因组学提供的大量信息,如何具有享用全人类共有的资源的初步能力,成了当今世纪生命科学学生必须掌握的基本技术和知识以及必须具有的初步能力[2]。

生物信息学以互联网为媒介,数据库为载体,利用数学知识、各种计算模型,并以计算机为工具,进行各种生物信息分析,以理解海量分子数据中的生物学含义。区别于其他生命科学课程,其在教学过程中要求有发达的互联网和计算机作为必备条件。调查显示国内高校都已建立校园网,其中拥有1000M主干带宽的高校已占调查总数的64.9%,2005年一些综合类大学和理工类院校已率先升级到万兆校园网[3],这些都为生物信息学课程在高校开设提供了良好的物质基础。该门课程与现代网络和信息技术密不可分,在教学工作中充分利用现代教育技术较其他课程更具优势。另外,该门课程尚未完全形成成熟的课程体系,为教师学习借鉴先进的教育思想与教学实践经验,在各方面尝试教学改革提供了广阔的空间。

1 课堂教学

生物信息学主要以介绍原理、方法为主,深入浅出,注重知识更新。课堂讲授以介绍生物信息学的相关算法、原理、方法为主,而这也是教学的重点和难点。在教学中对于这部分内容应遵循深入浅出、避繁就简的原则,结合具体实例分析算法,避免空洞复杂的算法讲解,以免学生觉得枯燥乏味、晦涩难懂,产生畏惧心理,望而生畏;注重讲解算法的思想和来龙去脉,让学生真正掌握解决问题的思路,培养其科学思维能力,并采用探讨式教学鼓励学生思考,通过讨论与研究的方式循序渐进地掌握复杂的内容,介绍相关的教学和物理学知识,使学生充分体会到生物信息学与其他学科的关系及其他学科的思想方法对于生物科学的重要性,培养其自觉地将其他学科的方法和思想应用于解决生物学问题的科学素质。在教学工作中教师必须能够紧跟学科发展方向,随时进行知识更新,了解最新的前沿动态,掌握新方法,将最新的知识和方法教给学生。同时,也要在教学中鼓励学生通过各种途径自觉地关注学科发展动态,拓宽知识面,培养其自学能力和创新意识。

2 充分利用现代化教育技术,采用启发式教学

目前,高等院校在教室内配备的多媒体投影播放系统促进了多媒体教学的广泛应用。生物信息学采用多媒体教学是适应学科特点、提高教学效果和充分利用现代化教育技术的一项基本要求。作为生物信息学教学的基本模式,多媒体教学使讲解的内容更加直观形象,尤其是对于具体数据库的介绍以及数据库检索、数据库相似性搜索、序列分析和蛋白质结构预测等内容涉及的具体方法和工具的讲解,可以激发学生的学习兴趣,加深学生对知识的理解和掌握,提高学生理论与实践相结合的能力。同时,由于生物信息学依赖于网络资源和互联网上的分析工具和软件,教室内的多媒体计算机连接到互联网,极大地提高了教学效果。但在实际教学中发现,多媒体教室也有局限性,学生主要以听讲为主,不能及时实践,教师讲解与学生实践相脱节,如果将生物信息学课程安排在计算机房内进行,并采用多媒体电子教室的教学方式,就可以解决上述问题。在教学中采用启发式教学,可为学生建立教学情景,学生通过与教师、同学的协商讨论、参与操作,能够发现知识、理解知识并掌握知识。

3 采用讲、练做一体化的教学模式,注重学生实践能力的培养

生物信息学课堂教学应积极学习借鉴职业培训和计算机课程教学中讲、练、做一体化的教学模式,在理论教学中增加实训内容,在实践教学中结合理论讲授,改变传统的以教师为中心、以教材和讲授为中心的教学方式。根据教学内容和学生的认知规律,应灵活地采用先理论后实践或先实践后理论或边理论边实践的方法,融生物信息学理论教学与实践操作为一体,使学生的知识和能力得到同步、协调、综合的发展。

通常可采用先讲后练的方法,即首先介绍原理、方法,之后设计相关的实训内容让学生上机实践。对于操作性内容和生物信息分析的方法和工具的讲解可采取进行实际演示的方法,教师边讲解边示范,学生在听课时边听讲、边练习,或者教师讲解结束后学生再进行练习。理论与实践高度结合,可充分发挥课堂教学的生动性、直观性,加深学生对知识的理解,培养和提高学生的实践操作能力。

4 优化生物信息学实验教学内容,发挥网络教学优势

生物信息学实验教学主要是针对海量生物数据处理与分析的实际需要,培养学生综合运用生物信息学知识和方法进行生物信息提取、储存、处理、分析的能力,提高学生应用理论知识解决问题的能力和独立思考、综合分析的能力。

生物信息学实验教学内容的选择与安排应按照循序渐进的原则,针对特定的典型性的生物信息学问题设计,以综合性、设计性实验内容为主,明确目的要求,突出重点,充分发挥学生的主观能动性和探索精神,以激发学生学习的主动性和创造性为出发点,加强学生创新精神和实验能力的培养。生物信息学实验教学以互联网为媒介、计算机为工具,全部在计算机网络实验室内完成。在教学中,充分利用网络的交互特点实现信息技术与课程的结合。教师通过电子邮件将实验教学内容、实验序列、工具等传递给学生,学生同样通过电子邮件将实验报告、作业、问题和意见等反馈给教师,教师在网上批改实验报告后将成绩和评语发送给学生,让学生及时了解自己的学习情况。教师可以通过网上论坛、聊天室和及时通讯工具QQ、MSN等对学生的实验进行指导,与其讨论问题等。网络环境下的生物信息学实验教学不仅能提高学生的学习兴趣,给学生的学习和师生的互动带来极大的方便,提高教师的工作效率,而且可以及时了解掌握学生的学习情况,有利于教师不断调整教学方案,达到更好的教学效果。

5 生物信息学采用无纸化考试,加强实践能力考核

生物信息学主要是学习利用互联网、计算机和应用软件进行生物信息分析的基本理论和基本方法。考试重点是考查学生对生物信息分析的基本方法和技能的掌握程度和对结果的分析解释能力。因此,在生物信息学考试中可尝试引入实践技能考试,通过上机实践操作重点考核学生知识应用能力。实践技能考试采用无纸化考试方式,学生在互联网环境下,对序列进行生物信息分析并对结果进行解释,不仅可考查学生对基本知识和基本原理的掌握,而且可考查学生进行生物信息分析的实际能力和分析思考能力。通过实践技能考试,淡化理论考试,克服传统的死记硬背,可促进学生注重提高理论用于实践的综合能力,同时可更有效地提高学生计算机应用能力。学生成绩评定大部分是以学生的考试成绩为主,难以对学生的学习情况和学习过程作全面地评价。因此,除采用实践技能考试并将其作为学生成绩的主要部分外,还应加强对学生平时学习态度、学习能力、创新思维等方面的考查。

总之,生物信息学教学是网络环境下生物教学的全新内容。上述教学措施提高了学生的学习积极性、实践操作能力、解决实际问题的综合应用能力及创新能力,收到了良好的教学效果,得到了学生的普遍欢迎,具有较强的可操作性和实践性。在今后的教学实践中,教师自身素质的提高和进一步的教学改革,将会不断完善生物信息学教学,培养具有跨越生命科学、信息科学、数理科学等不同领域的“大科学”素质和意识的生物信息学人才。

参考文献:

[1]赵国屏等.生物信息学[M].科学出版社,2002.

生物信息学范文第7篇

(海原县职业中学,宁夏 海原755200)

【摘 要】生本课堂的教学模式包括前置性学习、小组合作学习、班级交流学习和熟悉学习四个阶段,每个阶段都需要信息技术的支持。利用多媒体进行教学,可以使课堂得到优化,突破时空的限制,化微观为宏观,化抽象为形象;利用博客平台,可让课堂延伸到课外;利用照相机、手机等设备,可以把自然界的生命现象搬回课堂;利用网络进行社会调查,培养学生的社会责任感,使学生乐学、好学,从而实现生本教育的目标。

关键词 信息技术;生物教学;生本课堂

生物科学是自然科学中的一门基础学科,它是研究生物的形态、结构、分类、生理、遗传和变异、进化、生态的科学。它是以实验为基础,以生命为核心,通过实验探究得出科学结论的课程,学习这一门课,能让学生了解生命、珍惜生命,热爱大自然和保护环境。生本教育是由华南师范大学郭思乐教授创办,是以学生为本,促使学生乐学、好学为目标的教学模式,在教学组织上,鼓励先学,以学定教,少教多学,直至不教而教。采用个人、小组和班级的多种方式的自主学习。信息技术是指对信息进行提取、加工、整理和分析的过程。它包括多媒体、网络、通迅及相关的硬件设备等。但难度也加大了,要实现学生自主学习,需要借助信息技术。现本人在生物教学中,就如何借助信息技术实现生本课堂谈几点体会。

1 利用多媒体进行教学,实现生物课堂最优化

最优化课堂就是教师和学生在花费最少的必要时间和精力的情况下达到最好的效果。包括教学内容、教学过程和教学手段最优化。生本课堂是学生自主学习的课堂,但是中学生物学中有些知识比较抽象,有些实验也无法在实验室完成,给学生自学带来困难。这时,只要教师设计好教学内容,借助多媒体,也能使生物课堂得到优化。

1.1 利用多媒体进行教学,可以化微观为宏观,化抽象为形象

生物学科的特点是细微、动态、抽象。利用信息技术手段能够真实、生动、形象地展示生物的各种结构以及生理活动,显示生物的微观世界和宏观世界,把抽象的内容具体化,形象化。如《细胞结构》一节,所有生物都是由细胞构成,可是细胞形体微小,直径约为10μm,重约0.001μg,需借助显微镜才能观察。传统的做法是用洋葱、番茄、口腔上皮细胞等做成临时装片,放到普通显微镜中调试好,让学生排着队上来看,如果一个学生需要一分钟,全班按50人计,那么一节课也完成不了任务。学生观察的时间短,可能还没有真正看清细胞的结构,所以学生画的细胞结构图都是照着书本描的,而不是自己的真实所见。这样的教学效率很低,学生也可能不感兴趣。如果让学生自己动手制作各种临时装片,以小组为单位,每组派一个代表把装片放到数码显微镜,可以把观察到的图像拍摄下来,再用数据线连接到多媒体,学生就可以在大屏幕上看到自己的作品,有的装片细胞壁、细胞质、细胞核清晰可见,有的厚薄不均,结构模糊不清,不仅可以让学生了解制作装片的技巧,还可以让学生真实地感受到细胞的存在,从而提升了教学效果。

1.2 利用多媒体进行教学,再现生命痕迹

时间不停留,生命的历程不可逆转,逝去的生命不可能在实验室重现。如“生物的进化”,我们不能回到古生代去看三叶虫,中生代去看恐龙,新生代去看灵长类动物如何进化成人类,也不具备条件去博物馆看化石,但我们可以利用多媒体播放三叶虫、恐龙、灵长类的动画或者化石,了解三叶虫的形态,称霸一时的恐龙迅速灭绝的原因,人类和灵长类到底有多少相似之处,让学生可以充分展开联想和想像,理解生物进化的历程是漫长的、残酷的,也是自然选择的结果。

1.3 利用多媒体辅助实验教学,提高课堂效率

生物新课标本着亲近自然,贴近生活,培养学生动手能力的原则,增加了许多实验的内容,如此多的实验,不可能都在课堂上完成。我们可以选择一些耗时长,难度大的实验借助多媒体辅助教学。如“光合作用”一节,有4个实验,即使提前准备,也要2~3天的时间,如果把材料搬到课堂上,让学生动手尝试,至少需要4节课,即两个星期,严重影响教学进度。我们可以把这4个实验落实到各个学习小组,让他们在课外完成,然后拍下重要的图片,通过多媒体在课堂上展示出来,并把他们做实验的心得体会与同学们分享,可以达到事半功倍的效果,从而提高课堂效率。

2 创建“生物论坛”博客,让课堂延伸到课外

生本教育的理念是“先学后教、以学定教、少教多学”,教师是“导游”,学生是“游客”,教师需向学生提供一个平台,可让学生各抒已见,自由讨论。如《蒸腾作用》一节,可提前两天布置“植物蒸腾失水”的实验,让学生在课后完成,教师在“生物论坛”博客上留下讨论题,学生可根据自己的实验体会在此展开讨论;教师还可以把作业放在博客上,既可以减少抄袭,又可以实现无纸化作业。教师还可在博客上回答学生的疑难问题,或者参与学生的讨论。这样,学生在家也能很好地完成学习任务,而且趣味性强,还能提高学生的反应能力和培养多向思维。

3 利用照相机,把自然界的生命现象搬回课堂

生物学研究的是生命现象,需要对各种生命进行观察,然而大多数学校的生物园规模很小,生物品种少,尤其是动物。为了让学生亲近自然,又不影响正常的教学,可以让学生用照相机或手机(有照相功能的),把在自然界或生活中观察到的生命现象拍下来或录下来。如八年级生物上册《动物行为的主要类型》一节,可利用农村学校的丰富资源,让学生寻找机会观察猫捉老鼠的过程,了解猫的取食行为和老鼠的防御行为;观察狗撒尿和对幼仔进行哺育,了解狗的的领域行为和繁殖行为;观察蜜蜂采蜜,蚂蚁搬运食物,了解它们如何传递信息,如何分工合作;观察屋檐下的燕子筑巢、捕食和迁徙等,了解燕子的生活习性和迁徙行为。学生把这些相片或录像放到“生物论坛”博客上,达到资源共享。也可带回学校,放在课室的电脑上,用多媒体展示出来,供大家欣赏,帮助同学们理解动物的各种行为及意义,还能培养学生的观察能力和科学素养。

生本教育作为现代教育思想,关注和弘扬的理念是:人具有发展的无限可能性,教育应充分发挥人的潜能;人具有学习的天性,教育的功能在于顺应人的天性。所以,我们应该在认真分析生物学知识内容的基础上,着力于从学生的学出发,恰到好处地运用信息技术,实现信息技术与生物学科的整合,使生本教育的理念落实到实践,才能提高学生的学习效率,使学生的创新思维和能力得到充分的发展。

参考文献

[1]刘恩山.初中生物学[M].北京:北京师范大学出版社,2002.

[2]郭思乐.教育走向生本[M].北京:人民教育出版社,2001.

生物信息学范文第8篇

关键词生物化学信息化教学

信息技术与现代教育技术不断发展,信息教学模式成为教学发展与研究的主要方向[1]。生物化学是专科学生的一门必修课。生物化学具有较强的理论性,涵盖的课程层面非常广。从学生未来发展走向上看,不管是临床,还是医技,对这门学习质量的高低都将影响以后的发展。事实上,在教学中,因为专业的教学科目不断压缩,专业知识越来越多,给课程教学带来了很大的压力。在规定的时间内,要想提高教学质量,专科生物化学信息化教学成为了必要手段,所以,生物化学信息化教学研究和实践具有必要性。

1搭建信息化平台,挖掘课程内容

课程内容在学科门类中居于核心。课程内容质量的高低在很大程度上决定教师挖掘课程内容的深度和广度,及是否能有效调动学生的学习兴趣并获得怎样的教学效果。一般而言,课程内容将发生重大转变。处在这种环境中,要想获得理想的效果,就要充分发挥信息化的功能。信息时代具有典型的时代特征,也就是互联网的广泛普及,信息资源的迅速互动,深刻影响了生产力的产生。信息技术飞快发展,呈现出一种从未有过的态势。处在信息教育环境中,一些知识共享平台的出现,如世界大学城空间教学和爱课程等,将信息教学的模式搬到了授课中,正在改变固有的教学内容与教学模式。大规模公开线上课程使用起来较为方便,节约成本开销,具有众多受众,可以实现自主学习,资源丰富。学习者结合自己的兴趣爱好和习惯,选择适合自己的信息化学习平台。专科生物化学信息化教学紧随时代潮流,在教育部指导思想下,实施教学改革,在丰富教学内容的基础上,有效利用信息化的多种优势,改变传统知识记忆式的教学,转变成利用信息资源,有效挖掘学习资源,适度增设和学科教学有关的网站平台,呈现多种教学资源,让学生尝试通过世界大学城或微信平台等方式,将作业和研究内容上交。基于信息教学平台,这种教学模式不是一种知识的简单传授,而是一种学习技能的教授,重返教学本质,调动了学生的积极主动性,促进了学生的全面进步,培养了他们扎实的知识技能。

2年轻教师的培养

“教育发展,教师为先”,在整个教学过程中,教师扮演着指导者的角色,起到了至关重要的作用[2]。课程基础要较好地构建起来,师资力量所起的作用十分关键,缺少师资队伍的支撑,课程体系再好,也不能有效发挥作用。生物化学时刻处在信息化的变动中,每天都会产生新的发现和突破。教师在知识传播中起到十分重要的传递作用,如果缺少教师的桥梁作用,即使课程体系再好,最终也起不到很好的作用。所以,基于课程发展的视野,专科生物化学信息化教学结合自身实际,特别制订了教师培养计划,学校要求40岁之上的教师能熟练地使用媒体教学,鼓励40岁以下的教师去攻读硕士、博士学位,尽可能地引入青年博士毕业生,并将它们投放到教育的最前沿,这样就形成了层次突出、程序分明的教师结构。高学历青年毕业生拥有活跃的思维,在高新技术领域时刻处在最前沿,同时还是创新精神人才的代表,年龄相差无几,更容易接受新鲜事物和新的思想,和学生沟通起来也十分顺畅,有助于激发学生的学习热情和积极性,动态掌握学生的学习状况。此外,生物化学教学适当地使用了互联网公开课和研读国外原声教材等一些形式,有助于更好地借鉴国外教材中好的思路、方法和经验。

3教学方法的使用提高了教学效果

信息技术快速发展,网络信息技术整合了大学课程,改变了传统的教学模式,走向了网络教学模式[3]。当前,传统教学是一种教师讲、学生听的教学模式。这种教学模式使得学生课前没有做充分的准备,课中调动不起学习兴趣,考前临时抱佛脚。信息化教学将教学理论和信息技术联合起来,基于建构主义,围绕学生开展学习,为学生创设学习的环境,小组间的合作学习,利用多种信息技术为学生服务。实现了教学过程的转变,变成了对学生知识的学习,提升了课堂教学的效果,为社会做出更好的服务。

3.1设立兴趣小组,调动学生积极主动性

当前教学中学生缺少的是动手操作能力和创新能力。学科内容看上去十分繁杂,难度较大,然而,如果仔细分析阅读教材,学生就会明白,生物化学事实上十分简单,问题的难点在于学生缺少学习兴趣,无法调动自己的主观能动性。所以,强化学生的自主性学习和实验研究才是本质的问题,对培养学生的创新能力有益。在专科生物化学信息化教学中,考虑学习小组不同的兴趣爱好,要求不同学习小组担负各自的章节任务,提倡学习小组细化学习任务,各学习小组结合不同的学习内容,对问题中的难点进行有效解答。这样再理解内容就十分容易,制订详细的知识框架与知识线条,对内容中无法理解的知识,将其带到课堂上进行讨论,通过集体讨论最终将问题解决,获得了显著的教学效果。

3.2指引学生构建逻辑思维,提高学习能力

当前,许多学生的现实问题是缺少逻辑思维和整体思维。学科中专业词汇涉及概念众多,知识间的交叉较多,内容理解起来枯燥乏味,既不同意理解,记忆起来也十分困难。学生在学习中面临的主要问题是,无法更好地把握知识骨架,不清楚不同章节概念之间的相互联系。生物化学的本质由多种活性物质组成,其中大分子物质的化学物质就更为突出。从生物分子本质到功能和结果的延伸等,这是一套复杂而不失完美的体系。没有进行有效的逻辑训练,刚开始接触这门功课的学生学习起来将十分吃力。面对上述情况,在专科生物化学信息化教学中,教师要求学生记住一些关键字母,即w和h,也就是英语中的何时、何地、什么、谁和怎样,明确生物化学的反应机理,构建自身的知识体系,提倡学生借助互联网平成任务,学生在把握知识的同时,也提升了思维能力,在这种教学模式下,显著提升了教学效果。

4效果测评

为了探究适用生物化学的信息化教学设计理论、模式和方法,充分提升师生的信息素养,指引学生通过信息技术,学习生物化学,掌握适合时代潮流的信息化学习方式,通过问卷调查的方式,以我校2014级护理1~3班为测评对象,结果发现,借助“世界大学城空间教学”平台进行信息化教学,提升了教学效果和教学质量,多数学生认为,这种模式极大调动了他们学习的热情,愿意配合教师教学,同时也使自己掌握了生物化学信息化学习方法。

5结语

总而言之,教学是一项复杂的系统工程。教学为社会培养人才。在高科技快速发展的今天,国际竞争变得日趋激烈。国家和社会对人才提出了更高要求,要求教育教学要能应对这种挑战,教学体系是否有效,关键在于能否为国家和社会转化、承载和创新科学技术,此外,还要符合科学素养和价值体系等的要求。所以,在后续的教学实践中,应对信息时代的到来,要加强学习,更好地适应这种转变,产生反馈力和应用力,将教学改革推向一个更高的层次,获取教学改革的新思路,强化人才体系的构建。

参考文献

[1]蒋传命,周雨,杨秦.生物化学立体化教学模式的研究与实践[J].西北医学教育,2013(6):1175-1177.

[2]张惠.山东省中等职业学校师资队伍建设的策略研究[D].济南:山东师范大学,2015.