首页 > 文章中心 > 纳米复合材料

纳米复合材料

开篇:润墨网以专业的文秘视角,为您筛选了八篇纳米复合材料范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

纳米复合材料范文第1篇

关键词:机械合金化;铝基复合材料;纳米尺度

中图分类号:TB383.1 文献标识码:A 文章编号:1006-8937(2015)26-0072-02

1 概 述

铝基复合材料具有高比强度和比模量、低热膨胀系数、良好的尺寸稳定性、较高的高温机械性能以及抗疲劳、耐磨损等优良性能。与钢相比,铝基复合材料的密度仅为钢的三分之一,耐磨性则与铸铁相当;与铝合金相比,导热率与其基本相当,抗拉和抗压强度及弹性模量大幅提高,热膨胀系数有较大幅度的降低。

因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一,在航空航天、汽车、电子和光学仪器、体育用品等领域得到了广泛了应用。

基于进一步提高铝基复合材料机械性能的需求,研究发现,减小增强体颗粒尺寸会增加铝基复合材料的塑性、韧性和强度,因而越来越多小尺寸(约1 μm或更小)的增强体被用来制备铝基复合材料。纳米复合材料被定义为在多相固体材料中,其中一个相(一般为增强体)至少有一个方向其尺寸小于100 nm。在纳米铝基复合材料的制备中,纳米颗粒的特性给使用液相法的制备工艺带了困难,因而固相法更多的被采用,其中最常见的为机械合金化法。

机械合金化(MA)是一种固态粉加工技术,涉及了粉末在高能球磨机中的冷焊、破碎和再冷焊的过程。

在此过程中,一定量的混合粉末装入容器中并放入研磨介质,然后在预定的时间长度内进行高速搅拌。当粉末中含有塑韧性良好的金属材料时,在球磨过程中需要加工过程控制剂(PCA)来避免其因过度冷焊而结块。在球磨结束后,可得到合金化且混合均匀的粉末。

本文以Al2O3、Al3Ti和CNTs为代表增强体,概述了机械合金化制备相应纳米铝基复合材料的研究进展。

2 AlCAl2O3 纳米复合材料

纳米复合材料具有两种不同的制备方法。在第一种方法中,氧化铝增强体通过原位化学反应生成,被称为原位复合材料。在第二种方法中,Al2O3颗粒直接加入铝中,再将混合物一起球磨,以产生纳米复合材料。

一般情况下,原位生成复合材料的界面结合更强,机械性能比非原位生成复合材料要好,但在纳米尺度下性能差异几乎不存在。

2.1 原位法

在原位制备Al-Al2O3 纳米复合材料过程中,最常用的原位反应方程式有:

2Al+3CuO 3Cu+Al2O3

2Al+3ZnO 3Zn+Al2O3

Xi等人研究了Al含量从20%~85%(wt.)范围内,Al和氧化铜的反应球磨。研究表明,当Al含量仅为20%(wt.),发生完全还原反应,反应产物为铜和均匀分散的氧化铝颗粒分散。但是,随着Al含量的增加,会形成铝-铜金属间化合物,如Cu9Al4,CuAl2和Al(铜)固溶体。

同时,细小而分散的氧化铝颗粒进入到了Al基体内。Wu等人研究结果表明球磨铝和10 Wt.%的氧化铜17 h后,Al4Cu9相衍射峰开始出现在X射线衍射图上,并且此析出物经过退火后转化为CuAl2相。

增强相的体积分数过大会造成混合粉末的压制困难。当氧化铜含量降低至5Wt.%,增强体包括析出的大小为100~500 nmCuAl2和10~50 nm的氧化物和碳化物颗粒,Al基体的尺寸大约74 nm。依照晶粒尺寸(Hall-Petch)和Orowan强化机制分析了复合材料的强度,表明Hall-Petch强化来源于细晶铝、Orowan强化源于纳米尺度的氧化物和碳化物颗粒。

Durai等人通过球磨铝,氧化铜和ZnO的混合物,球磨后的粉末经过冷压以及高温烧结,制备了Al-Al2O3纳米复合材料。

研究表明,该复合材料中细小的氧化铝颗粒弥散分布在Al(Zn)或Al(Zn)-4Cu的基体中。该材料在经过测试后发现耐磨损性得到改良,相比于未经过球磨直接进行冷压和烧结的复合材料具有更高的硬度和耐磨性。

2.2 非原位法

Prabhu等人球磨了铝-氧化铝混合粉末,选用不同尺寸(50 nm、150 nm和5 μm)和体积分数(5、10、20、30和50)的Al2O3。混合粉末在行星式球磨机中经过不同时间的球磨,结果表明,当球磨时间超过20 h以后氧化铝增强体能均匀分散到铝基体中。Al-20Vol.%50Al2O3在不同球磨时间后的SEM照片,如图1(a)(b)(c)(d)所示。

不同体积分数的Al-50Al2O3在球磨20 h后的X射线能谱元素分布图,如图2所示。通过照片可观察到球磨20 h后,氧化铝增强体实现了均匀分布。

3 AlCAl3Ti 纳米复合材料

相比于其他大多数富铝金属间化合物,Al3Ti因为它具有熔点高(约1623 K)、相对低的密度(3.4 g/cm3)和较高弹性模量(216 GPA)。另外,由于Ti在铝中的低扩散性和溶解度,Al3Ti在高温下会展现出低的粗化速率。因此,Al3Ti存在于Al基体中下可以非常有效地提高铝基复合材料的刚度,室温机械性能和改善的铝基复合材料热稳定性。

Lerf和莫里斯用机械合金化法以铝粉和钛粉为原材料合成了Al-Al3Ti复合材料。球磨后能观察到两金属元素均匀分布,再对混合粉末在873 K进行退火后,有Al3Ti金属间化合物产生。0.1~0.5 μmAl3Ti颗粒分布于Al基体上,同时因为在球磨过程中加入PCA,纳米尺度(50 nm)Al4C3和γ-Al2O3的球状颗粒也存在于铝基体中。Wang和Kao用机械合金化法和高温烧结合成了Al-Al3Ti复合材料,复合材料微观结构表现为平均尺寸约100 nm的等轴颗粒状Al3Ti弥散分布在铝基体中,同时在晶粒内和晶界上还存在着纳米尺度的Al2O3 和 Al4C3颗粒。而且还对Al3Ti含量不同的Al-Al3Ti复合材料的高温变形行为进行了研究。

4 AlCCNTs 纳米复合材料

碳纳米管因其优异的机械性能使其成为理想的复合材料增强体,在增强材料的刚度和强度同时并实现轻量化。然而碳纳米管固有的物理性质,使其有强烈的团聚倾向,最终造成材料性能不升反降的现象。机械合金化法能较好地解决碳纳米管团聚现象,从而最大程度的发挥其作用。

Morsi和Esawi通过机械合金化法制备了Al-MWCNTs(2~5 wt.%)纳米复合材料,并对碳纳米管的分布和铝晶粒尺寸进行了研究,结果表明,球磨能够避免碳纳米管在复合材料中的团聚;在球磨48 h的样品中能观察单个的碳纳米管到嵌入在铝基体中;球磨过程中冷焊和破碎的共同作用,细化了铝基体的晶粒。

George等人用球磨合成的Al-CNT(单壁和多壁)复合材料,为了保持CNT的完整性,球磨时间较短,复合粉末再经过冷压、烧结和热挤压。通过测试材料的屈服强度、拉伸强度和弹性模量,结果表明,复合材料具有比基体合金更好的机械性能。性能的提升归结于热失配、剪滞和Orawan机制共同作用的结果。

5 展 望

纳米相增强铝基复合材料是近年迅速发展起来的一种新型材料,表现出优异的理化和力学性能,机械合金化法在制备纳米铝基复合材料过程中表现出独特的优势,但距离工程化应用仍然存在成本高、制造效率低、可靠性与稳定性有待提高等新材料实用化过程中面临的共性问题,需要进一步攻关并逐一克服。

参考文献:

[1] 王宇鑫,张瑜.铝基复合材料的研究[J].上海有色金属,2010,(31).

[2] Tjong SC.Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties[J].Adv Eng Mater,2007,(9).

[3] Lerf R,Morris DG.Mechanical alloying of Al-Ti alloys[J].Mater Sci Eng A,1990,(A128).

[4] Wang SH,Kao PE.The strengthening effect of Al3Ti in high temperature deformation of Al-Al3Ti composites[J].Acta Mater,1998,(46).

纳米复合材料范文第2篇

随着塑料工业的快速发展,塑料产品已经广泛应用到人们的生活当中,给人类带来了许多的便利,与此同时,由于人们对其大量需求致使废弃物中的塑料越来越多,这对生态环境造成了严重的污染。因而,现在许多科学家都在寻找新的环境友好型材料。其中生物可降解高分子材料就属于环境友好型材料,这其中最受人们关注的就是聚乳酸(PLA),具有良好的生物降解性,在微生物作用下分解为二氧化碳和水,对环境不会造成危害。人们之所以选择聚乳酸作为环境友好型材料来研究,是因为聚乳酸具有强度高,透明性好,生物相容性好等优点,可以应用于很多领域,包括医用、包装、纺织等。但是由于其结晶性能差,脆性大等缺点,使其在某些性能方面存在严重的不足,这就严重限制了聚乳酸的应用[1]。为了使聚乳酸能够更好的应用到各个领域,研究者们对其进行表面改性,使其性能得到改善,能够得到更好的应用。

1.生物可降解高分子材料

生物可降解高分子材料是环境友好型材料中最重要的一类。它是指在一定条件下,一定的时间内,能被细菌、真菌、霉菌、藻类等微生物或其分泌物在酶或化学分解作用下发生降解的一类高分子材料。由于其具有无毒、生物降解及良好的生物相容性等优点,生物降解高分子被广泛应用于医药、一次性用品、农业、包装卫生等领域。按照来源的不同,可将其分为天然可降解高分子和人工合成可降解高分子两大类。

天然可降解高分子:有淀粉、纤维素、蛋白质等,这类高分子可以自然生长,并且降解后的产物没有毒性,但是这类高分子大多不具备热塑性,加工起来困难,因此不常单独使用,只能与其它高分子材料掺混使用。

人工合成可降解高分子:有聚乳酸、聚己内酯、聚乙烯醇、聚己二酸乙二酯等。这类聚酯的主链大多为脂肪族结构单元,通过酯键相连接,主链比较柔软,容易被自然界中微生物分解。与天然可降解高分子材料相比较,人工合成可降解高分子材料可以在合成时通过控制温度等条件得到不同结构的产物,从而对材料物理性能进行调控,并且还可以通过化学或物理的方法进行改性[2]。

在以上众多的天然可降解高分子材料和人工合成可降解高分子材料中,天然可降解高分子材料加工困难,成本高,不被人们选中,因此,人们把目光集中在了人工合成可降解高分子材料中,这其中聚乳酸具有其良好的生物相容性、生物可降解性、优异的力学强度和刚性等性能,在诸多人工合成可降解高分子材料中脱颖而出,被人们所选中。

2. 聚乳酸材料

在人工合成可降解高分子材料中,聚乳酸是近年来最受研究者们关注的一种。它是一种生物可降解的热塑性脂肪族聚酯,是一种无毒、无刺激性,具有良好生物相容性、强度高、可塑性加工成型的生物降解高分子材料。合成聚乳酸的原料可以通过发酵玉米等粮食作物获得,因此它的合成是一个低能耗的过程。废弃的聚乳酸可以自行降解成二氧化碳和水,而且降解产物经光合作用后可再形成淀粉等物质,可以再次成为合成聚乳酸的原料,从而实现碳循环[3]。因此,聚乳酸是一种完全具备可持续发展特性的高分子材料,在生物可降解高分子材料中占有重要地位。迄今为止,学者们对聚乳酸的合成、性质、改性等方面进行了深入的研究。

2.1聚乳酸的合成

聚乳酸以微生物发酵产物-乳酸为单体进行化学合成的,由于乳酸是手性分子,所以有两种立体结构。

聚乳酸的合成方法有两种;一种是通过乳酸直接缩合;另一种是先将乳酸单体脱水环化合成丙交酯,然后丙交酯开环聚合得到聚乳酸[4]。

2.1.1直接缩合[4]

直接合成法采用高效脱水剂和催化剂使乳酸低聚物分子间脱水缩合成聚乳酸,是直接合成过程,但是缩聚反应是可逆反应,很难保证反应正向进行,因此不易得到高分子量的聚乳酸。但是工艺简单,与开环聚合物相比具有成本优势。因此目前仍然有大量围绕直接合成法生产工艺的研究工作,而研究重点集中在高效催化剂的开发和催化工艺的优化上。目前通过直接聚合法已经可以制备具有较高分子量的聚乳酸,但与开环聚合相比,得到的聚乳酸分子量仍然偏低,而且分子量和分子量分布控制较难。

2.1.2丙交酯开环缩合[4]

丙交酯的开环聚合是迄今为止研究较多的一种聚乳酸合成方法。这种聚合方法很容易实现,并且制得的聚乳酸分子量很大。根据其所用的催化剂不同,有阳离子开环聚合、阴离子开环聚合和配位聚合三种形式。(1)阳离子开环聚合只有在少数极强或是碳鎓离子供体时才能够引发,并且阳离子开环聚合多为本体聚合体系,反应温度高,引发剂用量大,因此这种聚合方法吸引力不高;(2)阴离子开环聚合的引发剂主要为碱金属化合物。反应速度快,活性高,可以进行溶液和本体聚合。但是这种聚合很难制备高分子量的聚乳酸;(3)配位开环聚合是目前研究最深的,也是应用最广的。反应所用的催化剂主要为过渡金属的氧化物和有机物,其特点为单体转化率高,副反应少,易于制备高分子量的聚乳酸。但是开环聚合有一个缺点,所使用的催化剂有一定的毒性,所以目前寻找生物安全性高的催化剂成为配位开环聚合研究的重要方向。

2.2聚乳酸的性质

由于乳酸单体具有旋光性,因此合成的聚乳酸具有三种立体构型:左旋聚乳酸(PLLA)、右旋聚乳酸(PDLA)和消旋聚乳酸(PDLLA)。其中PLLA和PDLLA是目前最常用,也是最容易制备的。PLLA是半结晶型聚合物,具有良好的强度和刚性,但是其缺点是抗冲击性能差,易脆性断裂。而PDLLA是无定形的透明材料,力学性能较差[5]。

虽然聚乳酸具有良好的生物相容性和生物可降解性、优异的力学强度和阻隔性,但是聚乳酸作为材料使用时有明显的不足之处;韧性较差并且极易弯曲变形,结晶度高,降解周期难以控制,热稳定性差,受热易分解,价格昂贵等。这些缺点严重限制了聚乳酸的应用与发展[6]。因此,针对聚乳酸树脂原料进行改性成为聚乳酸材料在加工和应用之前必不可少的一道工序。

2.3聚乳酸的改性

针对聚乳酸的以上缺点,研究者们对其进行了增韧改性、增强改性和耐热改性,用以改善聚乳酸的韧性和抗弯曲变形能力,提高热稳定性,进一步增强聚乳酸材料。

2.3.1增韧改性

在常温下聚乳酸是一种硬而脆的材料,在用于对材料要求高的领域,需要对其进行增韧改性。增韧改性主要分为共混和共聚两种方法。但是由于共聚法在聚乳酸的聚合过程中工艺比较复杂,并且生产成本高,因此在实际工业生产中,主要用共混法来改善聚乳酸的韧性。共混法是将两种或两种以上的聚合物进行混合,通过聚合物各组分性能的复合达到改性目的[7]。为了拓展聚乳酸材料在工程领域的用途,研究者们常采用将聚乳酸与其它高聚物共混,这样一方面能够改善聚乳酸的力学性能和成型加工性能,另一方面也为获得新型的高性能高分子共混材料提供了有效途径。

增韧改性所用的共混法工艺比较简便,成本相应低一些,在实际工业生产中更加实用。不过受到聚乳酸本身的硬质和高模量限制,共混法改性目前主要方向为增韧、调控亲水性和降解能力。

2.3.2增强改性

聚乳酸本身为线型聚合物,分子链中长支链比较少,这就使聚乳酸材料的强度在一些场合满足不了使用的要求。因此要对其进行增强改性,使其强度达到要求。目前主要采用了玻璃纤维增强、天然纤维增强、纳米复合和填充增强等技术来对聚乳酸进行改性,用以提高聚乳酸材料的力学性能[7]。

目前,植物纤维和玻璃纤维对增强聚乳酸的力学性能效果相差不大,但是植物纤维价格低廉,并且对环境友好,因而成为对聚乳酸进行增强改性的常见材料。而填充增强引入了与聚合物基体性质完全不同的无机组分并且综合性能提升明显,因此受到广泛的关注。这其中,以纳米填充最有成效,填充后可以全面提升聚乳酸的热稳定性、力学强度、气体阻隔性、阻燃性等多种性能。此外,聚乳酸具有生物相容性和可降解的特性,因此用做人体骨骼移植、骨骼连接销钉等医学材料。

2.3.3耐热改性

耐热性差是生物降解高分子材料共有的缺点。聚乳酸的熔点比较低,因此它在高温高剪切作用下易发生热降解,导致分子链断裂,分子量降低,成型制品性能下降。因此需要对聚乳酸进行耐热改性,用以提高其加工性能,通常采用严格干燥、纯化和封端基等方式提高其热稳定性[8]。目前,添加抗氧剂是提高聚合物耐热性的常用方法,除了采用添加改性或与其它树脂共混改性来提高聚乳酸耐热性,还可以通过拉伸并热定型的方法提高聚乳酸的耐热性,与此同时,还可以改善其聚乳酸复合材料韧性和强度。在纺织、包装业等领域有很好的应用。

从上述几种改性结果来看,与聚乳酸相比,改性后的聚乳酸复合材料综合性能等方面都得到了全面的提升,在医学、纺织、包装业等领域都得到了很好的应用。因此,聚乳酸复合材料得到了人们的喜爱与关注,并逐渐将人们的生活与之紧紧联系在了一起。成为国内外研究者所要研究的重点对象。

3.聚乳酸复合材料及研究进展

3.1聚乳酸复合材料

经过改性剂改性过的聚乳酸复合材料是一种新型复合材料,它是以聚乳酸为基体,在其中加入改性剂混合用各种方式复合而成的。同时它具备与聚乳酸相同的无毒、无刺激性、良好的生物相容性等性质,但是在性能方面要都优于聚乳酸。聚乳酸复合材料在柔顺性、伸长率、力学、电、热稳定性等方面都表现出了优异的性能,目前已经将其应用与医学、农业、纺织、包装业和组织工程等[9]领域,应用非常广泛。

聚乳酸复合材料可以在微生物的作用下分解为二氧化碳和水,对环境不会造成任何的危害,加上其在各个方面都具有优异的性能,可以用于各个领域。因此成为了新一代的环境友好型材料被国内外的研究者们广泛关注。目前,就聚乳酸复合材料的研究,国内外研究者们都取得了一定的成果和进展。

3.2聚乳酸复合材料研究进展

由于聚乳酸作为生物相容,可降解环境友好材料,存在着结晶速度慢、结晶度低、脆性大等缺陷,将需要与具有优异导电、导热、力学性能,生物相容性等优点的填料复合进行填充改性[10]。这个方法成为目前国内外研究的重点。对于聚乳酸复合材料的研究以下是国内外研究者的研究进展。

盛春英[1]通过溶液共混法制备了聚乳酸/碳纳米管复合物,用红外光谱和DSC研究了复合材料的等温结晶和非等温结晶性能,重点研究了CNTs的种类、管径、管长、质量分数以及聚乳酸分子量对复合物结晶性能的影响,以及等温结晶对复合材料拉伸性能的影响。

范丽园[2]将左旋聚乳酸和纳米羟基磷灰石用含有亲水基团的JMXRJ改性剂,通过溶液共混法,加强两者亲水性能和结合能力。以碳纤维为增强体,制备出碳纤维增强改性PLLA基复合材料。并分析其化学结构、结晶行为、热性能以及等温结晶时晶球变化。

张东飞等[3]人介绍了碳纳米管制备的三种方法,即石墨电弧法、化学气相沉积法和激光蒸发法,并阐述了碳纳米管导热基本机理,对碳纳米管应用于复合材料热传导性能进行了研究与展望。

赵媛媛[4]采用溶液超声法,选用多壁碳纳米管作为填充物,制备聚乳酸/碳纳米管复合材料,并对其进行改性研究。以碳纳米管化学修饰及百分含量的变化对其在PLLA基体中的分散性、形态、结晶行为、力学性能和水解行为的影响为主要研究对象。

张凯[5]通过对有效的碳纳米管分布对复合材料的导电性能进行研究。并重点从形态调控角度,调节碳纳米管在高分子基体中的有效分布,构建了高效的导电网络。并从晶体排斥、相态演变、隔离的角度,设计三种不同形态的导电聚乳酸/复合材料,降低了材料的导电逾渗值。

冯江涛[6]通过采用混酸处理、表面活性剂修饰和表面接枝三种方法对对碳纳米管表面进行修饰,利用溶剂蒸发法制备聚乳酸/碳纳米管复合材料,采用红外吸收光谱、拉曼光谱、偏光显微镜、透射电镜、扫描电镜、差示扫描量热分析仪对复合材料的表面形貌和结构进行了分析和总结。

李艳丽[7]通过混合强酸酸化与马来酸酐接枝相结合,对碳纳米管表面修饰,增强了碳纳米管与聚乳酸之间的界面相互作用,获得了碳纳米管分散均匀的聚乳酸/碳纳米管纳米复合材料。并且研究不同条件下碳纳米管对聚乳酸结晶行为的影响,发现碳纳米管对聚乳酸的结晶有明显的异相成核作用。

许孔力等[8]人通过溶液复合的方法制备聚乳酸/碳纳米管复合材料,并对其力学性能和电学性能进行了详细的研究,而且对复合材料的应用前景进行了展望。

李玉[9]通过将聚乳酸与具有优异导电、导热、力学性能、生物相容性的碳基纳米填料进行填充改性。考察了静电纺丝参数对聚乳酸纤维的形貌影响,并且考察了不同含量的碳纳米管对复合纤维形貌和结构的影响。此外,还对静电纺丝和溶液涂膜制备工艺对复合材料性能影响。

赵学文[10]通过将碳纳米粒子引入聚合物共混体系实现了复合材料的功能化与高性能化。并且他们提出一种基于反应性碳纳米粒子的热力学相容策略,有效的提高了不相容共混物的界面粘附力,增强了材料的力学性能,同时赋予了导电等功能。

Mosab Kaseem等[11]人通过热、机械、电气和流变性质对聚乳酸基质中碳纳米管的类型、纵横比、负载、分散状态和排列的依赖性。对不同性能的研究表明,碳纳米管添加剂可以提高聚乳酸复合材料的性能。

Mainak Majumder等[12]人通过对聚乳酸/碳纳米管复合材料制备和表征方面的研究,

综述有关碳纳米管在聚乳酸基质中分散的有效参数。并且将聚乳酸与不同材料结合用来改变其性能。

Wenjing Zhang等[13]人通过溶液共混制备了一系列PLLA/碳纳米管复合材料。测试了形态,机械性能和电性能。通过研究发现随着碳纳米管含量达到其渗透阈值,PLLA/碳纳米管复合材料的体积电阻降低了十个数量级。通过光学显微镜图像显示了纳米复合材料的球晶形态,用差示扫描量热法(DSC)测量,其结果显示,随着碳纳米管含量的增加,冷结晶温度升高。

Eric D等[14]人通过研究在半结晶聚合物碳纳米管复合材料中,碳纳米管被视为可以影响聚合物结晶的成核剂。但是,由于碳纳米管的复杂性。不同的手性,直径,表面官能团,使用的表面活性剂和样品制备过程可能会影响复合材料结晶。研究了半晶复合材料的结构,形态和相关应用。简要介绍聚合物中的结晶和线性成核。使用溶液结晶方法揭示了界面结构和形态。

Kandadai等[15]人通过拉曼光谱分析表明PLLA和碳纳米管之间的相互作用主要通过疏水的C-CH3官能团发生。复合材料的直流电导率随碳纳米管负载的增加而增加。导电的碳纳米管增强的生物相容性聚合物复合材料可以潜在地用作新一代植入物材料,从而刺激细胞生长和通过促进物理电信号传递来使组织再生。

从以上国内外研究者的研究进展中,可以看到,大部分的研究者都是通过溶液共混的方法制备聚乳酸复合材料,这种方法对于国内外的研究者们来说比较简便可靠。并且他们将制备好后的聚乳酸复合材料通过红外光谱、扫描电子显微镜、透射电子显微镜、差示扫描量热、拉曼光谱和偏光显微镜等手段进行其结构和性能的观察和分析,发现聚乳酸复合材料的性能在各个方面都有显著的提高,并且可以应用与各个领域,应用前景非常广阔。聚乳酸复合材料作为新一代性能全面的环境友好型材料,国内外的研究者们对聚乳酸复合材料的研究还在进行着,并且对于它的发展都有很高的期待。

4.本课题的研究思路及研究内容

4.1 研究思路

聚乳酸作为可降解生物材料,同时又具有生物相容性,力学性能好等优点。碳纳米管则具有良好的生物相容性,功能性等优点。将两种材料复合可以进一步改善聚乳酸结晶性能、力学性能、赋予其导电性。

对于聚乳酸/碳纳米管复合材料的制备可以通过共混法、原位聚合及静电纺丝法来制备,目前通常采用溶剂挥发法制备聚乳酸/碳纳米管复合材料。通过拉曼光谱、电子能谱、扫描电子显微镜、示差扫描量热来测定其结合能、材料表面形貌以及结晶、熔融温度等方面进行观察分析。

纳米复合材料范文第3篇

关键词:改性方法 碳纳米管 复合材料 研究进展

中图分类号:TB383

文献标识码:A

文章编号:1007-3973(2012)005-118-03

1 前言

自从1991年碳纳米管被Iijima发现以来,其凭借出众的力学、电学、热学、化学性能、极高的长径比(100—1000)以及纳米尺寸上独特的准一维管状分子结构,表现出运用在未来科技领域里所具有的巨大潜在价值,迅速成为物理、化学、材料科学领域里的研究热点。碳纳米管是由很多碳原子组合在一起形成的石墨片层卷成的中空管体,根据其石墨片层数的不同,可分为单壁碳纳米管(SWNTs)和多壁碳纳米管(MWNTs)。由于碳纳米管主要由碳元素组成,与聚合物的成分相似,所以可以使用CNT来增强聚合物纳米复合材料。随着的生产CNT方法越来越简便,其价格也越来越便宜,这种方法相对于在聚合物中添加含碳填料来改善聚合物性能等传统方法,改性效果更好,市场需求更广,经济前景更乐观。可以预见,在不久的将来CNT将会成为制备聚合物基复合材料的主要原料。

2 碳纳米管的处理

由于其自身固有缺陷,碳纳米管从合成到被应用到复合材料中,需要经过纯化和表面改性两个过程。

2.1 碳纳米管的纯化

目前合成碳纳米管的方法很多,但无论是经典的电弧放电法,还是新兴的水热法、火焰法、固相复分解反应制备法、超临界流体技术法制备成的碳纳米管都不可避免的被各种无定形碳颗粒、无定形碳纤维和石墨微粒等杂质附着,混杂在一起,影响其纳米粒子独有的小尺寸效应、界面效应、量子效应。它们的化学性质也相似,不但给后续制备复合材料带来困难,而且使其性能的发挥受到很大的影响,所以必须进行纯化处理。主要的方法是依靠碳纳米管和杂质对强氧化剂的敏感程度不一样,通过控制氧化剂的用量和氧化反应的时间来达到纯化的目的。目前主要的氧化方法有:气相氧化法、液相氧化法、固相氧化法和电化学氧化法。

2.2 碳纳米管的改性

经过纯化处理的碳纳米管仍然不能直接用来制备复合材料,由于它的惰性表面、管与管之间固有的范德华力、极大的比表面积和长径比,会使其在复合材料基体和溶液体系中产生非常严重的团聚与缠结,不利于创造良好的界面和在聚合物中的均匀分散及其优异性能的发挥。因此为了增加碳纳米管与聚合物基体间的界面粘结力,防止界面发生滑移,需要对碳纳米管实施表面改性。

目前从本质上来说,CNT改性方法主要有2种:共价键改性(化学改性)和非共价改性(物理改性)。

2.2.1 共价键改性

共价键改性是利用接枝、氧化等手段直接在CNT的侧壁上引入小分子化合物、活性官能基团(如-COOH、-OH和-NH2)等,提高CNT的活性,从而来达到增加其在溶液和聚合物中的分散度和相容性的目的。但是这种方法将SP2杂化的碳原子改变成了SP3杂化,使长径比大大下降,削弱了碳管的力学和电学性能,破坏了碳纳米管的结构,所以一般较少使用这类方法对CNT进行改性。近几年通过不断改良,发现浓硝酸常温处理法和重氮化技术处理法是其中两种较为成熟且对碳管结构损伤较小的优良改性方法。

2.2.2 非共价键改性

非共价键改性方法最大的优点是它在不破坏CNT结构的同时,也能克服自身固有缺陷提高其与聚合物的相容性和制备复合材料时的加工性。一般方法是通过加入阴离子、阳离子或非离子型表面活性剂(如十二烷基硫酸钠(SDS)和十二烷基苯磺酸钠(NaDDBS))使碳纳米管吸附在聚合物上而不发生团聚或者是加入生物大分子(如蛋白质、DNA或多糖类高分子)使聚合物分子中的%i键和CNT上的离域%i键发生相互作用来实现非共价键改性。为此本文还将介绍芳香二羧酸酰胺类%[成核剂(%[-NA)改性和离子液体改性两种改性方法。此外还可以对CNT实行包覆改性,但其缺点是包覆分子与CNT之间的范德华力较弱,使得CNT在复合材料中传递有效载荷的能力较低,改性效果较差,应用较少。

3 碳纳米管复合材料的制备

当碳纳米管经过纯化和表面改性处理后,会表现出某些优异的性能(因改性方法的不同而各具特点),将其应用到复合材料的制备中,可以进一步提高复合材料的力学、电学、化学、和生物特性等等。下文将以实验实例介绍。

3.1 浓硝酸常温处理CNT、水相沉淀聚合法制备聚丙烯腈基碳纳米管复合材料

把一定量的碳纳米管经过超声分散后,室温下浸泡在浓硝酸中,并每隔大约2h更换一次浓硝酸。24h后取出碳纳米管,经去离子水反复洗涤、抽滤直至呈中性,再加入到去离子水中,加水溶性引发剂APS,溶解后超声分散2h。然后将聚合单体AN、共聚单体IA按一定比例混合均匀溶入其中,以水相沉淀法制备聚合物基复合材料,整个过程需通N2保护防止CNT被氧化。实验测试表明,碳纳米管经浓硝酸常温处理后,不仅给碳管接枝上羧基,而且还保持了本身稳定的结构,使制备的复合材料预氧化温度提前,放热量和放热速率均降低,避免了集中放热;虽然结晶程度稍稍有所减弱,但并没有改变聚合物的结晶晶型和结构,但是却大大提高了导电性能。

3.2 重氮化技术处理CNT、原位氧化聚合法合成磺化碳纳米管改性聚苯胺复合材料

聚苯胺(PANI),作为制作超级电容器的绝佳材料,具有价格低廉,良好的导电性,较高的比电容,独特的掺杂/脱掺杂机理和优异的氧化/还原特性等优点,然而PANI的循环稳定性差,却限制了它在电子行业里的广泛应用。CNT的稳定性好,同时也有高导电率和大比表面积的特点,采用重氮化技术处理,合成水溶性的磺化CNT,作为原位氧化聚合的载体与PANI复合,可降低PANI的内阻,提高其循环稳定性,赋予PANI碳纳米管复合材料极高的比电容(>300 F/g)。经红外和紫外-可见光谱分析表明,PANI与磺化CNT之间存在着%i电子间的相互作用,并形成了电荷转移复合物,在一定范围内碳纳米管直径的越小,电荷转移复合物越多。循环伏安实验结果显示,与单一的PANI纳米棒相比(271 F/g),PANI碳纳米管复合材料拥有更高的比电容(309~457F/g),呈现出更高的比电容和更快速的充放电特性。

3.3 溶液法制备聚丙烯(PP)/%[-NA-MWCNT复合材料

此法选用带有共轭苯环结构的芳香二羧酸酰胺类%[成核剂(%[-NA) 和MWCNT在冰水浴中混合,超声分散一段时间后使%[-NA吸附在MWCNT上,通过%i-%i共轭作用来提高碳纳米管的分散性,低温抽滤即可得到稳定性良好的%[成核剂改性的碳纳米管(%[-NA-MWCNT),再通过溶液法使之与pp复合,得到聚丙烯/%[-NA-MWCNT纳米复合材料。通过广角X射线衍射(WAXD)分析了复合材料的结晶形态,结果表明%[-NA-MWCNT诱导聚丙烯在短时间内生成大量尺寸较小的%[球晶,增加了复合材料的结晶度,使得晶粒大小分布更窄,进一步提高了复合材料的电学和力学性能。

3.4 离子液体中碳纳米管复合材料制备

与传统的溶剂相比,离子液体(ionic liquids,ILs)作为一种新型的绿色环保溶剂及优良电解质,近几年来在碳纳米管复合材料制备中得到了广泛的应用。离子液体是一种主要由有机阳离子和各类阴离子组成的盐类,在室温下呈现为液态。作为“绿色”溶剂,离子液体拥有许多特异的性能:极高的热稳定性和化学稳定性;很宽的液态温度范围(-96℃到300-400℃)可以满足在恶劣环境下工作的需要;离子电导率强,电化学窗口宽;对许多物质表现出良好的溶解能力等。经试验测试表明:CNT能够均匀地分散在ILs中,而且ILs独特表面修饰作用,可以通过形成细束网格结构来实现CNT的表面功能化,赋予CNT复合材料更加优异的性能(因各种离子所带的官能基团不同而异)。目前,Zhang已经在ILs中采用电沉积法合成出了CNT/纳米AuPt/IL复合电极,ILs作为模板和活性剂提高了纳米AuPt在CNT膜上的分布密度,降低了电极的电子转移电阻。而且ILs还可以依靠其阴离子与纤维素中羟基的作用,破坏纤维素分子间的氢键,有效地提高CNT在纤维素中的溶解度,采用湿纺丝干喷法制备CNT复合纤维,大大提高纤维的储能模量和机械性能。

4 结语

近几年来,在材料领域里不断涌现出各种利用改性CNT与金属、聚合物复合的新型纳米复合材料,这些材料由于本身特殊复杂的纳米结构在物理、化学、生物上表现出优异的性能。而取得这些科技成果的重大挑战就是如何提高CNT分散度和改善界面性能,达到CNT的最佳改性。本文较全面的综述了目前关于碳纳米管改性及其复合材料的制备方法,其中包括技术较为成熟的浓硝酸常温处理法、效果显著的重氮化技术处理法和芳香二羧酸酰胺类%[成核剂(%[-NA)改性法、绿色环保的离子液体改性方法,以及相关的复合材料制备实例。总的来说,随着科技的不断发展,新方法的不断涌现,CNT的改性必将变得越来越高效,高性能的CNT复合材料的开发和应用势必会越来越广。

参考文献:

[1] IIjima S.Helical microtubes of graphitic carbon[J].Nature,1991,354:56-58.

[2] Tang B Z,Xu H Y.Macromolecules,1999,32.

[3] Fan J H,Wan M X,Zhu D B,Chang B H,Pan Z W,Xie S S.J Appl Polym Sci,1999,74:2605-2610.

[4] Ajayan P M,Schadler L S,Giannaris C,Rubio A.Adv Mater,2000,12:750-753.

[5] Haggenmueller R,Gommans H H,Rinzler A G,Fischer J E,Winey K I.Chem Phys Lett,2000,330:219-225.

[6] 徐国才.纳米科技导论[M].高等教育出版社,2005:86-87.

[7] 杨占红,李新海,等.碳纳米管的纯化[J],化工新型材料,1999,27(2):22-24.

[8] 辛菲,许国志.碳纳米管增强聚合物纳米复合材料研究进展[J].中国塑料,Vol.25, No.8,Aug.2011.

[9] Kim W,Nair N,Lee C Y.J Phys Chem C,2008,112:7326-7331.

[10] Manuel G R,Fiona F,John E O,Andrew I M,Werner J B,Johannes G V,Marcinhet P.J Phys Chem B,2004,108:9665-9668.

[11] 刘玉兰,王延相,周海萍,等.聚丙烯腈基碳纳米管复合材料的制备及其表征[J].材料科学与工程学报,132,Aug.2011.

[12] 孙敏强,朱忠泽,李星玮,等.磺化碳纳米管改性聚苯胺复合材料的合成与超级电容特性[J].高分子学报,2006,(6).

[13] Wang K,Huang J Y,Wei Z X.J Phys Chem C,2010,114(17):8062-8067.

[14] Dhawale D S,Dubal D P,Jamadade V S,Salunkhe R R,Lokhande C D.Synth Met,2010,160(5-6):519-522.

[15] Xu G C,Wang W,Qu X F,Yin Y S,Chu L,He B L,Wu H K,Fang J R,Bao Y S,Liang L.Eur Polym J,2009,45(9):2701-2707.

[16] Cho S I,Lee S B.Acc Chem Res,2008,41(6):699-707.

[17] Yang Hongsheng(杨红生),Zhou Xiao(周啸),Zhang Qingwu(张庆武).Acta Phys-Chim Sin(物理化学学报),2005,21(4):414-418.

[18] Jin Junpin(金俊平),Li Xin(李昕),ZhangDequan(张德权),Zhao Li(赵莉).Acta Polymerica Sinica(高分子学报),2010,(2):192-198.

[19] Xiao M M,Tong B,Zhao W,Shi J B,Pan Y X,Shen J B,Zhi J G,Dong Y P.Chinese J Polym Sci,2010,28(3):331-336.

[20] Ma Li(马利),Lu Wei(卢苇),Gan Mengyu(甘孟瑜),Chen Chao(陈超),Yan Jun(严俊),Chen Fengqiang(陈奉强).Acta Polymerica Sinica(高分子学报),2008,(12):1185-1191.

[21] Frackowiak E,Khomenko V,Jurewicz K,Lota K,B間uin F.J Power Sources,2006,153(2):413-418.

[22] Meng C Z,Liu C H,Fan S S.Electrochem Commun,2009,11(1):186-189.

[23] Yan J,Wei T,Shao B,Fan Z,Qian W,Zhang M,Wei F.Carbon,2010,48(2):487-493.

[24] 张玲,胡斌,李春忠.%[成核剂修饰多壁碳纳米管增强聚丙烯纳米复合材料的分散及结晶行为[J].高分子学报,2011,12(12).

[25] 张锁江,吕兴梅.离子液体:从基础研究到工业应用[M].北京:科学出版社,2006.

[26] 林香萍,管萍,胡小玲,等.离子液体中制备碳纳米管复合材料的研究[J].现代化工,第2011(9),31(9).

[27] Zhang Y F,Guo G P,Zhao F Q,et al.A novel glucose biosensor based on glucose oxidase immobilized on AuPt nanoparticle-carbonnanotube-ionic liquid hybrid coated electrode[J].Electroanal,2010,22(2):223-228.

纳米复合材料范文第4篇

[关键词]纳米TiO2 光催化 溶胶-凝胶

[中图分类号] TB33 [文献码] B [文章编号] 1000-405X(2014)-4-348-2

纳米TiO2在光照下比一般材料具有更优异的催化能力,但它只能利用太阳中的紫外光,太阳能利用率低,在太阳光辐射中,波长小于388 nm的紫外辐射只占大约4%―5%。另外,纳米TiO2 催化剂光激发后产生的空穴和电子复合的几率很高、量子效应较低,这些缺点也是目前半导体光催化剂普遍存在的问题。本实验的目的是探索纳米TiO2复合材料的制备,提高其在可见光下的光催化活性。

1材料制备过程

1.1实验过程如下

(1)将10ml钛酸丁酯与20ml无水乙醇混合搅拌15min,充分溶解为A溶液。

(2)另取一定量的0.1 mol/L V5+溶液,加酸至50 ml为B溶液。

(3)将A滴入B中,机械搅拌1.5h,常温反应,得透明溶胶。

(4)取NaOH溶液缓慢滴入溶胶,用HNO3调节pH值,得到TiO2凝胶。

(5)加入适量水离心分离洗去杂质。100℃下烘干,并研细至无明显颗粒感。

1.2XRD测试

采用日本理学公司的Rigaku-D/MAX-2550PC型X射线衍射仪对所得粉末样品进行X射线衍射分析,使用Cu-Kα 辐射源,波长为1.5406 A,使用Ni滤波片,采用管流为300 mA、管压为40 KV,扫描速度5度/分,步长为0.02°。阶梯扫描步长为0.04°,每步停留5秒。

1.3光降解试验

准确称取0.100g活性艳红染料,配成浓度为50mg/L的染料, 模拟印染废水。另取0.200g催化剂投入染料溶液,测混合液的吸光度。活性艳红的特征吸收波长为540nm。紫外灯浸入水中照射,并每隔0.5小时取上清液,直接于Kmax=540nm处测其吸光度,再根据吸光度变化求其脱色率。

脱色率=(1-A/A0)×100%

式中:A0,A分别为光照前后的吸光度。为保证紫外线的有效利用,在玻璃烧杯的外面贴上一层反光的铝铂纸。

2材料制作结果与讨论

2.1掺钒比率对材料结晶的影响

添加不同量的钒制得TiO2作XRD测试,结果如图1所示。从XRD衍射图分析得到,各材料的晶粒尺寸大小依次为4.2、4.0、3.4、3.9、4.1、4.3nm,说明随着掺钒的比例增加, 晶粒尺寸先减小后增大,在x=0.01时最小。由于V5+离子的离子尺寸比Ti4+离子要小, V5+离子渗入晶胞,替代了Ti4+的位置,使纳米晶体的晶粒尺寸减小。当x量较小时(x

2.2pH值对材料结晶的影响

对不同pH下制得的样品作X射线衍射分析,见图2。在碱性条件下,溶胶沉淀速度较快,二氧化钛结晶度差,呈无定形状态。当pH=6时,二氧化钛的峰形明显尖锐化,说明pH=6条件下合成的二氧化钛晶形较好。pH=6和pH=3的条件下,样品中含有板钛矿型的二氧化钛。实际操作中低pH条件下制得的材料量较少,所以反应的pH值不应过低。

2.3实验温度对材料结晶的影响

随着反应温度的升高,锐钛型TiO2峰形尖锐化,说明TiO2微粒晶形越来越好;同时从XRD衍射图分析得到,不同反应温度制得的复合材料中,TiO2纳米晶粒尺寸依次为3.4 nm ,3.3 nm , 3.6 nm ,3.9 nm ,4.3nm,说明反应温度升高,TiO2纳米晶粒尺寸呈增大趋势,这可能是由于在较高的温度下,TiO2生成结晶的反应速度较快,容易生成较大的颗粒。随着纳米材料晶粒尺寸增大,其量子化效应减弱。

3材料催化性能研究

3.1钒添加量对材料催化性能的影响

对实验制备的材料作催化实验,从降解效果图4中可以看出,随着掺杂量的变化,催化效率先增加再减少。可能是由于钒离子进入TiO2晶胞中,造成晶格缺陷,改变了能隙,从而增加了紫外光的利用率。当钒的量过大时,可能生成了钒的氧化物包覆在TiO2的表面,减少受光面积,而降低催化效率。

3.2温度对材料催化性能的影响

将1%掺杂量制得的TiO2催化降解活性艳红染料,其催化结果如下,样品的催化性能先升后降,在40℃下材料具有最大的催化降解率,达到90%。

3.3PH值对材料催化性能的影响

尽管不同的pH值对纳米二氧化钛的晶型有影响,但是各样品在紫外线下对活性艳红的催化性能基本无差别。

4结论

实验结果表明纳米TiO2合成过程中,温度,pH,钒的掺杂量等对结晶有较大影响。在V5+的掺杂量为1%,pH=6,温度为100℃,溶解酸为HNO3的情况下可以制得锐钛矿型的纳米TiO2,晶形较好,纳米晶粒尺寸约在3nm~~4nm之间。纳米TiO2在低浓度的染料溶液中催化脱色效率在80%~90%之间,而且反应过程中,脱色速率基本衡定。

参考文献

纳米复合材料范文第5篇

[关键词]纳米羟磷灰石-脂肪族聚酯酰胺;成骨细胞;生物相容性

[中图分类号]R 783.1[文献标志码]A[doi]10.3969/j.issn.1673-5749.2012.01.009

Biological effects of nano-hydroxyapatite-aliphatic polyester-amide composite on the osteoblastsDeng Xia1, Xia Xi2.(1. Dept. of Stomatology, Nuclear of Industry 416 Hospital, Chengdu 610051, China; 2. Dept. of Prosthodontics, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 400015, China)

[Abstract]ObjectiveTo evaluate the biological effects of nano-hydroxyapatite-aliphatic polyester-amide composite(nHA-PEA)on the osteoblast.MethodsThe Dulbecco minimum essential medium(DMEM)leaching liquor of nHA-PEA was applied to the osteoblasts of the test groups while the DMEM itself was applied to control. The methyl thiazolyl tetrazolium assay, flow cytometry and alkaline phosphatase(AKP)analysis were used to evaluate the changes in cell growth, cell cycle and cell function. Moreover, osteoblasts were cultured on the surface of nHA-PEA composite and the attachment, growth and proliferation of osteoblast were investigated. Results The cultured osteoblasts grew well and showed nomorphological variation. Osteoblasts of different test groups demonstrated relative proliferation rate ranging from 92%~107% without dose-dependent effect(P>0.05). The cell cycle and AKP activity were similar in test and control groups(P>0.05). Good cell attachment and proliferation manner were observed on the membranes. ConclusionnHA-PEA has no negative effects on the osteoblast and its osteoblastcompatibility is proved.

[Key words]nano-hydroxyapatite-aliphatic polyester-amide composite;osteoblast;biocompatibility

有机-无机复合生物材料是组织工程学研究的热点[1],该材料主要用于修复和重建人体的硬组织。纳米羟磷灰石-脂肪族聚酯酰胺(nano-hydroxyapatite-aliphatic polyester -amide composite,nHA-PEA)复合材料由nHA粒子与PEA均匀混合制得,其中羟磷灰石(hydroxyapatite,HA)是人体骨、牙等无机组织的主要成分,PEA及其共聚物是一类新型的生物可降解高分子材料[2]。nHA- PEA复合材料兼具了有机物的韧性和无机物的刚性,具有良好的理化性能。本研究将nHA-PEA复合材料作用于体外培养的成骨细胞,检测其对细胞生长、增殖能力、细胞周期、碱性磷酸酶(alkaline phosphatase,AKP)活性的影响,观察细胞在其表面的黏附、铺展形态,评价其对骨细胞的相容性和生物活性。

1材料和方法

1.1主要材料和仪器

达尔贝科极限必需培养液(Dulbecco minimum

essential medium,DMEM)、胰蛋白酶(Gibco公司,美国),新生小牛血清(成都哈里生物工程有限公司),甲噻唑四唑氮(methyl thiazolyl tetrazolium,MTT)试剂(Sigma公司,美国),AKP试剂盒(北京柏定生物工程有限公司)。Sanyomco-17AI二氧化碳孵箱(Sanyo公司,日本),Olympus IX50相差倒置显微镜(Olympus公司,日本),JSM-5900LV型扫描电子显微镜(scanning electron microscope,SEM;JEOL公司,日本),可见光高效分析仪/HTS 7000plus多孔板紫外/荧光(PE公司,美国),流式细胞计数(flow cytometry,FCM;Coulter公司,美国),LightCycler检测仪(Roche公司,德国)。1.2浸提液制备

按文献[3]制得4组nHA-PEA复合材料,按其无机和有机成分的质量分数分组,分别为A组0和100%,B组10%和90%,C组20%和80%,D组30%和70%。将4组nHA-PEA复合材料(平均厚度0.5~1 mm)消毒灭菌后,按照国际标准化组织ISO 10993-5医疗器械生物学评价标准所推荐的试样表面积和浸提介质为6 cm2·mL-1的比例[4],置37℃滤除细菌的培养液中,浸提3~4 d的浸提液备用。

1.3成骨细胞培养和细胞悬液的制备

取生长稳定的第4代SD乳鼠颅骨成骨细胞,经质量分数0.25%的胰酶消化后行细胞计数,用DMEM配制5×104个每毫升的细胞悬液。

1.4甲噻唑四唑氮比色

将200μL密度为5×104个每毫升的细胞悬液加入96孔板,置于体积分数5%的二氧化碳培养箱,37℃培养24 h,细胞贴壁后弃掉原有培养液,将细胞分为试验组(A~D)和对照组(E),试验组每组均分别加入200、100、50μL终质量分数分别为100%、50%和25%的浸提液,形成A1、

A2、A3,B1、B2、B3,C1、C2、C3,D1、D2、D3,

对照组加入原培养液。每日于相差显微镜下观察细胞形态,生长和增殖情况。分别于第1、3、5、7 d各取96孔板1块,每孔加入20μL的MTT,孵育4 h,每孔加入200μL二甲基亚砜,振荡1 min,混匀,570 nm波长下测定各孔吸光度(A),取3孔均值,计算细胞增殖率(proliferation rate,RP):RP=(A试验组/A对照组)×100%。1.5流式细胞计数

接种对数生长期的成骨细胞1×105个每毫升瓶,细胞贴壁后A~D组弃原培养液加入质量分数均为100%的复合材料浸提液,E组加入新鲜原培养液,标准环境下3 d换液1次,培养7 d,消化、离心并收集沉淀细胞。流式细胞计数DNA荧光强度及散光参数,Multicycle软件分析细胞的周期分布和程序性死亡情况。1.6碱性磷酸酶活性检测

取1×105个每毫升的细胞悬液3 mL加入小号培养瓶,将其置于体积分数5%的二氧化碳培养箱,37℃培养24 h,细胞贴壁后弃掉原有培养液,A~D组均加入质量分数100%的浸提液,E组加入新鲜原培养液,分别于第4天和第7天中止培养,收集80μL细胞悬液,以AKP试剂盒通过HTS 7000plus多孔板高效分析仪行AKP活性测试。

1.7成骨细胞与材料的复合培养

将载有nHA-PEA复合膜的血盖片试样置于6孔板内,环氧乙烷冷消毒,磷酸缓冲盐溶液浸泡清洗3次,每次1 h,DMEM孵育过夜备用。取1×105个每毫升的细胞悬液,分别接种于已准备好的材料上,37℃,体积分数5%的二氧化碳孵箱继续静置培养5 d。分别于第1天和第5天将试样取出,以体积分数10%的多聚甲醛固定,体积分数30%~100%的乙醇梯度脱水,醋酸异戊酯置换乙醇,临界点干燥,表面喷金,SEM下观察。1.8统计学分析

使用单因素方差分析,分析各组总体均数间差别有无统计学意义,在检验数据之前对数据行方差齐性检验。用q检验比较两组间均数的差别。P>0.05为差异无统计学意义。

2结果

2.1细胞生长观察及甲噻唑四唑氮比色结果

显微镜下,不同质量分数的nHA-PEA复合材料浸提液组及对照组细胞培养6 h后均已贴壁,12 h细胞突逐渐舒展,24 h细胞开始铺展,72 h后细胞数目明显增多,排列规则密集,细胞呈梭形、三角形或不规则形,形态分析各试验组与对照组细胞形态相似,显示各组细胞均生长良好。试验组和对照组不同时间的MTT比色结果见表1。试验组间的MTT值及其与其对照组间的差异无统计学意义(P>0.05);试验组成骨细胞的相对增殖率为92%~107%,不同质量分数的nHA-PEA复合材料浸提液组对成骨细胞的细胞毒性级数为0~

1级(0级:细胞相对增殖率大于等于100%,1级:细胞相对增殖率为90%~99%)[5],不同质量分数浸提液组间差异无统计学意义(P>0.05)。

3讨论

在生物医学材料的细胞毒性试验方法中,最常用的是材料浸提液培养法和细胞材料直接接触法。本试验综合运用了这两种方法,首先选择浸渍法,具体原因如下。1)对于nHA-PEA复合材料,nHA的生物相容性勿庸置疑;而PEA是新型的人工合成的生物降解型高分子材料,其理化性能和降解性能已有相关研究[6],但其生物相容性鲜有报道。2)由于直接接触法共同培养时,细胞对材料表面和对培养孔板底部的黏附性有差异,细胞洗脱率的不同会产生干扰而使试验复杂化。事实上,仅需考察nHA-PEA复合材料溶出物的

细胞毒性,就可以达到初步评价其生物相容性的目的,而且以材料的浸提液代替材料本身在材料学的研究中已得到公认。本试验严格按照国际标准化组织ISO 10993-5医疗器械生物学评价标准和要求制备生物医学材料浸提液[4],以浸提出最大量的滤出物质,考察其对成骨细胞增殖和细胞周期的影响。

MTT比色是常用的细胞增殖能力检测方法,可以对材料的细胞毒性作出可靠的定量评价[5]。本试验在相差倒置显微镜下观察到nHA-PEA复合材料浸提液不影响细胞的生长形态;MTT值在试验组间以及各组与对照组间差异无统计学意义,试验组的细胞增殖率在92%~107%,表明nHA-PEA复合材料浸提液对成骨细胞的生长无不良影响。因此在进一步地对细胞周期和功能进行的分析中,仅选用最高质量分数的nHA-PEA复合材料浸提液作为试验组进行分析比较。在加入HA的试验组,MTT值略高于对照组,但差异无统计学意义且无量效关系。原因可能与其中的钙、磷水平较高有关。

流式细胞计数已广泛应用于肿瘤学、生物化学和免疫学等领域,细胞周期检测已成为生物材料生物相容性评价的一种可靠方法和指标[7],是常规细胞增殖试验的一项重要补充。近年来,生物材料生物相容性研究进展之一是生物材料的生物功能性评价[8]。生物材料作用于细胞后使其周期改变,从而使其行为和功能发生改变。本试验在MTT比色的基础上进一步使用流式细胞计数,旨在从细胞增殖周期的角度来分析nHA-PEA复合材料浸提液对细胞增殖周期DNA合成的影响,从分子水平上评价材料的细胞毒性。从MTT比色可见,组间、组内不同质量分数的nHA-PEA复合材料浸提液对成骨细胞的增殖和增殖周期影响不大,细胞周期各亚期组成比和程序性死亡率差异亦无统计学意义。B、C、D组处于S期的细胞略多,表明加入HA对细胞增殖有一定促进作用,但不显著,不存在量效关系。此结果与MTT比色结果一致。

除了对细胞增殖的影响,生物材料的细胞相容性还表现在材料对细胞重要功能的影响。AKP是骨形成所必需的酶,是生物矿化和成骨细胞分化成熟的早期标志物[9-10]:其表达代表骨形成状况,表明细胞分化的开始,并随细胞分化的发展而增强;其活性的高低,反映了相应细胞向成骨方向化的趋势。本研究采用酶联法对成骨细胞AKP的表达进行检测,结果显示试验组AKP的表达量与对照组相比较差异无统计学意义,说明nHA-PEA复合材料对成骨细胞的功能酶表达无不良影响,也没有明显的促进作用,不抑制其分化功能。

用浸提液作为试验样品测定复合材料中滤出物质对细胞生长、增殖的影响,仅为预测材料植入体内的潜在危害提供了初步依据,其结果尚有一定的局限性;因此,需在浸渍试验良性结果的基础上再采用直接法将成骨细胞与材料联合培养,以进一步考察材料本体的结构性能对细胞生物学的影响。本研究表明,成骨细胞在复合材料上具有良好的黏附、铺展和增殖行为,即nHA-PEA复合材料具有成骨细胞相容性和良好的细胞相容性等特性。

4参考文献

[1]Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering[J]. Biomaterials, 2004, 25(19):4749-4757.

[2]Han SI, Kim BS, Kang SW, et al. Cellular interactions and degradation of aliphatic polys derived from glycine and/or 4-amino butyric acid[J]. Biomaterials, 2003, 24(20):3453-3462.

[3]邓霞,陈治清,钱志勇,等.纳米羟磷灰石/脂肪族聚酯酰胺复合材料[J].生物医学工程学杂志, 2008, 25(2):378-381, 392.

[4]李玉宝.生物医学材料[M].北京:化学工业出版社, 2003:8.

[5]王喜云,王远亮.生物材料的生物学评价方法研究进展[J].北京生物医学工程, 2007, 26(1):95-98.

[6]Liu C, Gu Y, Qian Z, et al. Hydrolytic degradation behavior of biodegradable polyetheresteramide-based polyurethane copolymers[J]. J Biomed Mater Res A, 2005, 75(2):465-471.

[7]戴建国,黄培林,郭英,等.细胞周期作为生物相容性评价指标的研究[J].东南大学学报:自然科学版, 2005, 35(2):271-274.

[8]杨晓芳,奚廷斐.生物材料生物相容性评价研究进展[J].生物医学工程学杂志, 2001, 18(1):123-128.

纳米复合材料范文第6篇

1 引 言

可待因(Codeine)又名甲基吗啡,具有止咳和镇痛的作用。其温和的效果和较低的成瘾性使它成为世界卫生组织对癌症病人止痛治疗方案中的最主要的药品之一[1],测定药物中可待因的含量具有重要意义。目前,有关磷酸可待因的测定方法主要有化学发光法[2]、高效液相色谱法[3,4]、毛细管电泳法[5,6]、电化学法[7],滴定法[8]。这些方法中,或操作繁琐,或使用昂贵的仪器,很多方法的灵敏度不高,并不能完全满足临床痕量分析的要求。本研究利用可待因结构中的叔胺基,通过固定联吡啶钌(Ru(bpy)2+3),建立了固相电化学发光(ECL)法测定其含量。

电化学发光具有灵敏度高、适用范围广的特点,可用于多种物质的高灵敏检测,近年来备受关注。通过将发光试剂固定在电极表面,制备固相电化学发光传感器,可以大大节约昂贵的发光试剂,提高灵敏度,因此拓宽了电化学发光法在分析化学中的应用。溶胶凝胶(Solgel)和Nafion膜法是其中研究和应用最多的固定化技术,但也有各自的不足之处。Nafion膜法的成膜结构致密,传质速率较慢; 溶胶凝胶法制备的电化学发光传感器稳定性较差。近年来,已开发了多种新方法以克服这些不足,如通过向Nafion膜中掺杂多壁碳纳米管(MWNTs)提高Nafion膜传质速率[9],以及利用SiO2溶胶凝胶法固定联吡啶钌及二氧化硅微球包埋联吡啶钌来改善修饰电极的稳定性[10,11]等。本研究在溶胶凝胶法的基础上加入导电胶(CA),制备纳米二氧化钛氧化锌/硅溶胶/导电胶(Nano TiO2ZnO/Silica sol/CA)复合材料,基于此复合材料将发光材料联吡啶钌Ru(bpy)2+3固定到金电极的表面,构建磷酸可待因电化学发光传感器。采用该方法固定Ru(bpy)2+3,改善了硅溶胶易开裂的缺陷,从而提高了传感器的稳定性。与已报道的电化学发光法检测磷酸可待因的方法[12,13]相比,本方法具有较宽的线性范围、高的灵敏度; 同时由于实现了Ru(bpy)2+3的固定,从而解决了发光试剂不断消耗所带来的分析成本高、环境污染等问题。

4 结 论

在纳米TiO2ZnO/Silica sol/CA复合材料上固定联吡啶钌,制备了固体电化学发光传感器。Nano TiO2ZnO和导电胶的加入,明显提高了灵敏度和稳定性。通过对联吡啶钌的固定,实现了联吡啶钌的循环使用,降低分析成本的同时提高了灵敏度。此传感器用于电化学发光法测定复方磷酸可待因口服具有方法灵敏度高、线性范围宽和检出限低等特点。

References

1 Coleman W F. J. Chem. Edu., 2004, 81(9): 1366

2 Rezaei B, Khayamian C, Mokhtari A. J. Pharm. Biomed. Anal., 2009, 49(2): 234-239

3 Manassra A, Khamis M, Dakiky M, AbdelQader Z, AlRimawi F. J. Pharm. Biomed. Anal., 2010, 51(4): 991-993

4 Chittrakarn S, Penjamras P, Keawpradub N. Forensic Sci. Inter., 2012, 217(13): 81-86

5 Yu H H, Wang C C, Yu T H, Wei K K, Wu S M. J. Chromatogr. A, 2013, 1295: 136-141

6 Rodríguez J, Castaeda G, Contento A M, Muoz L. J. Chromatogr. A, 2012, 1231: 66-72

7 vorc L, Sochr J, Svítkov J, Rievaj M, Bustin D. Electroch. Acta, 2013, 87: 503-510

8 National Pharmacopoeia Committee. Pharmacopoeia of Peoples Republic of China. Part 2. Beijing: Industry Press, 2010: 1153

国家药典委员会. 中华人民共和国药典. 2部. 北京: 化学工业出版社, 2010: 1153

9 SHANG ZheYi, HAN ChaoFeng, SONG QiJun. Chinese J. Anal. Chem., 2014, 42(6): 904-908

商哲一, 韩超峰, 宋启军. 分析化学, 2014, 42(6): 904-908

10 Lei Q, Yang X R. Anal. Chim. Acta, 2008, 609: 210-214

11 Lei Q, Yang X R. Adv. Funct. Mater., 2007, 17: 1353-1358

12 Greenway G M, Knight A W, Knight P J. Analyst, 1995, 120(10): 2549-2552

13 LA Ming, CHEN ChangDong, FENG YunXiao, CAI Zhuo. Chinese J. Anal. Chem. Lab, 2012, 31(8): 70-74

腊 明, 陈昌东, 冯云晓, 蔡 卓. 分析实验室, 2012, 31(8): 70-74

14 QING YongQuan, ZHENG YanSheng, HE Yi, HU ChuanBo, MO Jing. Electroplating and Finishing, 2013, 32(4): 55-58

青勇全, 郑燕升, 何 易, 胡传波, 莫 倩. 电镀与涂饰, 2013, 32(4): 55-58

15 LI YunHui, WANG ChunYan. Electroehemilumineseence. Beijing: Chemical Industry Press, 2008: 57

李云辉, 王春燕. 电化学发光. 北京: 化学工业出版社, 2008: 57

16 HAO LiHong, QU TingLi, ZHAO ZhengBao. Chinese J. Hospi. Pharm., 2008, 288(21): 890-1891

郝丽宏, 曲婷丽, 赵正保. 中国医院药学杂志, 2008, 288(21): 1890-1891

17 LI SiGuang, LI LiJun, CHENG Hao, CAI Zhuo. Chinese J. Anal. Chem. Lab, 2009, 28(3): 70-73

李斯光, 李利军, 程 昊, 蔡 卓. 分析试验室, 2009, 28(3): 70-73

纳米复合材料范文第7篇

关键词:插层复合 复合材料 层状无机物 电导率

一、聚合物/层状无机物复合材料的研究状况

聚合物复合材料是以聚合物为基体,无机物以纳米尺度 (小于100nm)分散于基体中的新型高分子复合材料。与传统的复合材料相比,由于纳米粒子带来的纳米效应和纳米粒子与基体间强的界面相互作用,聚合物复合材料具有优于常规聚合物复合材料的力学、热学性能。目前, 聚合物复合材料的研究成为当前材料科学研究的热点和前沿课题, 具有重大的科学意义和广阔的应用前景.聚合物 /层状硅酸盐复合材料是目前研究最多、最有希望工业化生产的聚合物纳米复合材料。

1.聚合物 /层状无机物复合材料的特点

1.1填料用量远远少于普通复合材料;

1.2具有优良的热稳定性及尺寸稳定性;

1.3优良的力学性能、高的阻隔性;

2.聚合物 /层状无机物复合材料的制备方法

用于制备聚合物/层状无机物纳米复合材料的方法主要有三种:

2.1单体嵌入到无机物夹层中,在外力作用如氧化剂、光、热、引发剂或电子作用下发生聚合;

2.2主体材料强有力的氧化还原特性使嵌入与聚合原位同时发生, 也自动聚合;

2.3溶胶-凝胶法,在聚合物溶液中形成层状无机物,共沉淀干燥后得到嵌入纳米复合材料。

3.聚合物/层状无机物复合材料的应用前景

3.1高性能有机改性陶瓷

层状硅酸盐嵌入聚合物,可降低陶瓷的固化烧结温度,且韧性大大提高。如在层状硅酸盐中嵌入丙烯腈,在其夹层间聚合得聚丙烯腈,在高温下,聚丙烯腈经烧蚀可转化为碳纤维,从而得到分子水平分散的碳纤维增韧陶瓷。

3.2导电材料

在层状无机物的夹层中嵌入导电聚合物, 可制得导电复合材料。

3.3发光或变色材料

聚合物PPV和MoO3分别是有机电致发光和无机电致发光变色材料, 二者形成的复合材料,不但兼有各自的优点,而且改善了加工性能。

聚合物/层状无机物复合材料还可用于分子增强剂、光学材料等,总之聚合物/层状无机物复合材料结合了有机高分子材料的易于加工、韧性好和无机物的刚性、尺寸稳定性强等优点,应用十分广泛,有着广阔的应用前景。

二、聚合物/层状无机物复合材料的制备

本实验选用聚乙烯醇和无机物高岭土作为试验用聚合物和层状无机物。采用聚合物水溶液插层, 聚乙烯醇可以从水溶液中直接插层到高岭土的层间,并形成强的氢键, 因此而减弱了高岭土层间结合力,层间小分子迅速分解产生巨大的推力使其层间剥离,得到纳米复合材料。此法的特点是:水溶剂对高岭土具有一定的溶胀作用,有利于聚合物插层并剥离高岭土片层,插层条件比其他方法温和,水基插层既经济又方便。

1.实验药品

聚乙烯醇 (PVA) 工业品 市售

高岭土 工业品 市售

焦磷酸钠 分析纯 上海试剂二厂

工业酒精 工业品 市售

2.实验仪器

DDS-11A型电导率仪 上海雷磁新泾仪器有限公司

电子恒温水浴锅 上海金桥科析仪器厂

KD-50万能电子拉力实验机 深圳凯强利电子股份有限公司

电子显微镜

3.样品的制备

将配方量的聚乙烯醇和蒸馏水加入反应器, 在100℃下搅拌溶解,将配方量的高岭土、焦磷酸钠(分散剂)和蒸馏水在研钵中搅拌研磨配制成乳液。待反应器中的聚乙烯醇完全溶解后,将配制成的高岭土乳液在100℃、高速搅拌下加入反应器中,并持续搅拌1h,使高岭土完全分散在聚乙烯醇中。将产物倒入烧杯中,测定其电导率并在玻璃或瓷片上流延成膜。将此膜在常温下干燥24h,得到半透明状薄膜。

4.测试与表征

4.1电导率的测定:先用DDS-11A型电导率仪测出标准样(纯的聚乙烯醇溶胶)的电导率,再比较各组样品(溶胶状态下)电导率与标准样之间的偏差, 计算得出电导率。

4.2拉伸强度的测定:将制得的样品薄膜裁制成一定尺寸,在75℃下干燥1 h使其失水干燥, 在拉伸实验机上测定其拉伸强度。

4.3X-射线衍射测试。

4.4光学显微镜测试。

三、实验结果与讨论

1.高岭土含量对样品电导率的影响

对于聚乙烯醇/高岭土复合材料,人们最关心的是高岭土是否以纳米尺寸分散于聚乙烯醇基体中;分散是否均匀;它具有那些特性;它的应用前景如何;下面就上述问题研究的结果进行讨论。

表1 高岭土含量对电导率的影响

从表1可以看出溶胶状态下样品电导率随高岭土含量的增加而增大,这是因为在溶液中高岭土自身表面带有电荷, 增大其含量电荷数也会增多, 电导率必然会有所提高,但提高幅度不是很大。而且可以看出蒸馏水含量对电导率影响很小。

2.高岭土含量对样品抗拉强度的影响

表2高岭土含量对抗拉强度的影响

从表2可以看出在高龄土含量小于10%时,, 样品的抗拉强度与屈服强度都比空白样有明显提高。这是因为在高龄土含量小于10%时出现纳米效应是其强度提高,力学性能有很大改善。从表中还可以看出在75℃下加热后, 其抗拉强度有很大提高,这是因为加热时样品失水,结晶度提高,样品抗拉强度提高。但断裂伸长率几乎不变。

3.X-射线衍射分析

由衍射图可知,高岭土的峰出现在2θ~11.716°(d~7.5472A),2θ~35.278°(d~2.5420A),分别对应于001, 002晶面。聚乙烯醇的最强峰出现在2θ~19.489°(d~4.5509A),对应于101晶。可以看出高岭土的加入使得聚乙烯醇结晶度有很大提高。

四、结论

1.样品电导率随高岭土含量的增加有所提高。

2.高岭土含量在10%以内, 能产生纳米效应, 使得样品抗拉强度、屈服强度等力学性能有很大提高。

3.聚乙烯醇的结晶度有很大提高。

4.由分散剂处理过后, 高岭土以球状颗粒分布, 尺寸可达到85nm。

从以上分析可以看出,聚乙烯醇/高岭土薄膜强韧性好,拉伸强度高,气体透过率小。但加入高岭土后使得薄膜透明性变差,由于实验操作过程中薄膜厚度不均, 所以薄膜的测试性能有所偏差,有待于进一步改进。

图2 聚乙烯醇/高岭土X-射线衍射图

参考文献

[1] 徐国财, 张立德.纳米复合材料, 北京:化学工业出版社,2002.207~209

[2] 张彦军, 秦永宁, 马智, 吴树新.高岭土制备纳米材料的研究进展, 天津化工, 2002(3):19~21

[3] 马永梅, 漆宗能.聚合物/层状硅酸盐纳米复合材料, 塑料, 2001, 30⑹:9~10

纳米复合材料范文第8篇

关键词:纳米复合包装材料;应用优势;安全性;研究;应用进展

前言

纳米包装材料通常是指利用纳米技术对材料进行纳米级的合成、改性、添加,使材料具备某一功能或特性的一种包装材料。经过合成、改性、添加后的材料分别称为复合、改性、纯纳米包装材料。文章所提的复合包装材料是采用纳米颗粒和其他材料进行复合制作出来的新型材料。目前国内外主要的研究是聚合物的纳米复合材料,也就是将纳米材料通过超微粒子或10nm级的分子水平融入到高柔性的聚合物内形成的材料。目前常用聚合物有PP、PE、PVC、PET、PA、LCP等,常用纳米颗粒有金属氧化物、金属以及无机聚合物等。目前多种复合材料在食品包装上得到了广泛应用,得到了很好的应用效果。

1 纳米复合包装材料的特点

随着科学技术的不断发展,包装材料的制造技术与实际应用也取得了巨大的突破,目前通过在传统制造工艺中添加纳米颗粒,可以得到纳米复合包装材料,不仅使传统的包装材料在质量及功能上有了显著的提升,同时也促进了制造工艺的发展。纳米技术作为一种先进的技术手段,通过与传统的包装材料制造技术相结合,通过将纳米技术的优越性能在材料包装制造中予以体现,尤其是纳米颗粒的属性特征,不仅结构稳定,同时可塑性较强,使得新型包装材料韧性较强,增加了新型包装材料的可靠性,扩大了包装材料的使用范围,促进了制造业的发展。另外,纳米技术具有较强的清洁功能,不仅生产工艺不会对环境产生危害,同时纳米技术还可以实现重复利用的功能。因此,将纳米技术与传统包装制造技术相结合,使得新型包装材料具有可降解的功能,不仅减少了对环境的破坏,同时也增加了资源的利用率,符合我国生态发展的要求。另外,纳米复合包装材料密度较强,能够有效的阻挡细菌的侵入,避免细菌的滋生,同时还具有保鲜的特点[1]。

2 纳米复合包装材料的应用优势

2.1 食品保鲜包装上的应用

第一,纳米银材料,果蔬食品在成熟后会释放乙烯,在对其包装时,会造成乙烯浓度增加,这会加速果蔬食品的腐烂,导致产品品质降低,造成经济损失,而当前时期所利用乙烯吸收剂对食品进行保鲜,不能取得较好的效果。在运用纳米银包装材料能够提升果蔬的保鲜效果,在包装材料中添加纳米级的银粉,可以催化乙烯进行氧化,来对乙烯含量进行降低,从而达到保鲜目的。经过实验研究表明,PE/Ag2O材料制成的包转材料对水果的保鲜效果很好,而且其纳米银存在稳定,可以安全的用于果蔬保鲜[2]。第二,纳米分子筛材料,由于其具有较高的比表面积以及多孔结构,拥有选择透过性,使其成为很好的气调包装材料,可用于食品保鲜。应用纳米分子筛材料对水果保鲜进行实验,可以很好的抑制果树的呼吸作用,从而达到对果树的保鲜,延长了果蔬的保鲜时间。第三,纳米TIO2材料,纳米二氧化钛具有杀菌、自清洁、阻隔性好、吸收紫外线等特性,纳米二氧化钛可将果蔬中的乙烯氧化为水和二氧化碳,从而延长保鲜时间[3]。目前国内外大量公司的包装材料均添加有Ag或ZnO的纳米颗粒,使包装材料拥有杀菌能力,从而提高食品的保鲜时间。

2.2 食品阻隔包装上的应用

包装阻隔性是指对于二氧化碳、氧气等气体的阻隔性以及对水蒸气的阻隔性。纳米聚合物/蒙脱土复合材料拥有极强的阻隔性,这是因为蒙脱土剥离后与薄膜方向平行,使黏土片层对液体或气体的阻碍能力得到了提升,使气体或液体通过膜的路径被大大的演唱,使其渗透率被很好的降低。经过大量的实验研究表明,含有纳米材料的复合包装材料与不含纳米材料的包转材料进行对比,复合包装材料的气体阻隔性得到了明显的提高,对水蒸汽的透过率降低约为50%。目前国际上对于如何改进聚对PET内的纳米材料组分,使其更加适合于啤酒或其他食品包装对气体阻隔的需求,是当前时期聚对PET包装材料的一个研究方向。有的技术对于耐受紫外线的能力有着很大的提高,有的技术可以实现涂层水分离,材料回收便利,成为了良好的绿色包装[4]。美国和韩国均有公司将MMT-多层聚合物包装薄膜运用到对啤酒以及碳酸饮料的包装中,以此来对啤酒或饮料中的CO2阻碍扩散和防止O2的进入,从而保证食品的风味以及延长保质期。

2.3 食品抗菌包装上的应用

纳米复合材料是一类有着极强抑菌能力的新型包装材料,由于其自身具有抗菌性能,可以保证包括真菌、细菌、酵母菌、藻类甚至病毒等的繁殖与生长水平处于相对较低的状态。利用纳米复合材料制作的各类制品,拥有自洁卫生功能,可以很好地放置微生物的传播。当前时期使用较广的抑菌薄膜便是以聚烯烃薄膜为基础,对其添加纳米级无机抑菌剂以及增效剂。借助重金属离子以及光催化作用来使微生物蛋白质发生变形和沉淀。同时在实际生产过程中不需要对工艺、设备进行改变,只需在原工艺的基础上向其添加规定量的无机纳米抗菌剂便可生产。经过大量研究性试验表明,在聚合物中添加银系抗菌剂或ZnO纳米粒子可以有效地提高抗菌性能,虽然添加银系抗菌剂的材料的机械强度以及透气性有所减低,但是可以满足生产标准以及性能要求[5]。

3 安全性分析

由于纳米颗粒具有较强的清洁功能,且无毒无害,结构稳定,密度较强,能够有效的隔绝细菌,延长食物的保质期,因此,纳米复合包装材料在食品包装方面有着广泛的应用,主要起到了食品保鲜、食品密封以及食品抗菌的作用。以纳米涂炭技术为核心的新型包装材料能够在食品包装的表面形成一层聚合物积层,能够有效的加强对事物气体的密封,同时也有效的阻挡了外界气体对食物的影响,由于纳米技术具有可降解的性能,因此,以纳米涂炭技术为核心的新型包装材料能够实现绿色包装。无机纳米抗菌技术具有较强的稳定性,使得以无机纳米抗菌技术为核心的新型包装材料具有较强的杀菌、抑菌的效果,如抗菌薄膜等,不仅能够有效的抑制细菌的滋生,还可以隔绝紫外线,在食品抗菌方面有着重要的应用。

4 结束语

随着科技的不断进步的,使得纳米材料所具有的高强度、高稳定性以及诸多新特性,在食品包装领域上得到了很好的应用。在今后的发展将会有更多的纳米级的材料被应用于更多的领域,来对人们的生活方式以及环境加以改变。所以,纳米包装材料有着非常广阔的发展与应用前景。

参考文献

[1]陈志昌,陈思浩,王继虎,等.石墨烯纳米复合材料在光催化应用中的研究进展[J].材料导报,2015,10(19):146-151.

[2]丁琪,李明熹,杨芳,等.含银微纳米复合材料在生物医学应用的研究进展[J].中国材料进展,2016,1(1):10-16+48.

[3]杨阳,张琳琳,赵聪.食品包装中纳米复合材料的应用[J].中国包装工业,2016,2(2):21.