首页 > 文章中心 > 航空制造业技术

航空制造业技术范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

PDM集成技术在航空制造企业中的应用

摘 要:航空发动机的制造被誉为“工业之花”,是一个国家工业加工水平的集大成之作。航空发动机加工精度高、制造难度大,从而对航空制造企业生产加工带来了不小的困难,为了在激烈的市场竞争中获得一席之地,应当充分发挥PDM系统在产品的数据管理、工艺BOM重构、工艺结构化管理及系统集成方面的优势,以PDM系统为平台推动航空制造企业制造流程的优化,以便更好地挖掘航空制造企业的潜力,提高航空制造企业的生产竞争力。

关键词:PDM航空制造企业;应用;BOM

中图分类号:TP391 文献标识码:A

随着国家信息化战略的逐步推进和实施,将传统加工制造企业与信息化相结合,将会使得企业迸发出“1+1>2”的潜力。航空制造企业作为高精度加工制造的代表应当积极做好企业的信息化建设,做好PDM系统在航空制造企业生产管理中的应用,构建以PDM系统为平台的集成管理系统,优化航空制造企业各产品生产环节,提高航空制造企业的生产效率,增强航空制造企业的核心竞争力。

1.航空制造企业产品特点

航空发动机具有结构复杂、加工工序繁多、加工难度大和装配精度要求高等的特点,从而制约了我国航空发动机的制造发展。新时期做好航空制造企业的信息化建设从而促进航空制造企业各制造管理环节之间的协调优化,以便在航空发动机的生产制造中最大限度地降低航空发动机的生产成本、生产周期,提高航空发动机的生产效率和制造质量以满足日益扩大的航空发动机需求。

2. PDM系统航空制造企业的应用

2.1 航空制造企业应用PDM系统的主要目标

全文阅读

计算机技术在航空制造业中的应用

1数字化设计技术

以飞机装配工艺为例,过去采用样板、模线、样件等模拟量传递方式,效率,准确度,产品质量都比较低。而现在基于计算机的先进装配协调方法采用了数字量传递的方式,效率,准确度都有很大提高。然而无论是哪种装配,协调工艺都决定于其设计。因此要提高装配,协调工艺必须从设计入手。数字化设计技术以CAD/CAM技术、计算机技术、网络数据库技术和信息集成技术发展等为基础,主要内容有产品数字化定义、虚拟装配和并行技术等。产品数字化定义是应用计算机来描述和定义产品的研制,它的目的是对在产品全生命周期的数字化过程中所包含的信息进行定义和描述,以及这些信息之间的相互关联。产品数字化装配是指对已进行数字化定义的产品零部件通过计算机实体进行虚拟装配,确定航空部件的配合是否符合尺寸,配合要求是否存在超差等等。使在设计过程中的可能不合理因素减到最少,从而减少在制造过程中的更改与返工。由于采用了数字化设计技术,使波音777研制周期缩短了一半,降低了25%的成本,减少了75%的出错与返工率,产品质量得到了大幅度提高。并在波音777飞机开发与制造过程中的成功应用,使数字化设计技术的重要性得到充分认识。

2集成技术

由于航空产品有研制周期长,结构复杂,制造精度要求高,产品使用期长,售后情况复杂,研发生产合作国际化等特点,因此集成技术显得尤为重要。作为集成制造技术的重要组成部分,计算机集成制造技术通过计算机技术将CAD、数控编程、数控加工等原本各自独立的环节整合为一个有机整体,以达到提高产品质量,缩短制造过程,减少生产成本的目的。现代集成技术包含有信息集成、过程集成和企业间集成。通过现代集成技术可实现数字化、网络化、全球化制造。完成波音777研发生产后波音公司,开始实施DCAC/MRM(飞机结构设计与控制/制造资源管理),以达到从用户订单、设计制造、最终到交付使用的统一信息和过程管理的目的。现代集成技术可以解决以前单一数据源方面存在的问题,统一管理产品数据、生产管理过程数据。确定信息的完整性、唯一性、协调性、有效性、无冗余和安全性。将资源管理、设计、制造、销售、服务等5个过程的信息整合为一体。

3数控加工技术

先进的数控加工技术是当代航空制造业中一个重要的组成部分,也是柔性制造技术的基础。随着我国近年来大量新机研制项目的开发,大量的业务都需要国际间合作,各航空企业所保有的数控机床总量已大幅度增加,通过数控机床加工的零件数量明显增多。在航空制造所涉及的零部件主要特点是结构复杂、零件数量多,表面形状复杂。因此加工技术难度很大,在此需求背景下,对航空行业的数控加工技术水平有很高要求。为实现这一要求,以特征技术为基础的针对飞机零部件和发动机机构件的CAD/CAPP/CAM集成系统技术,分布式的DNC技术,CAP智能化技术,网络数据库以及相应的数据管理技术,车间生产组织、管理调度技术有了很大的提高。

4虚拟制造技术

虚拟制造的实质是通过相关软件在计算机中的制造,可在计算机中演示完整的制造过程。通过虚拟制造可以验证制造过程的安全性,并且可以进一步优化生产方案。从而保证设备与操作人员的安全,降低产品的生产成本,缩短生产工期,提高生产效率。

全文阅读

航空制造业计算机技术应用

1数字化设计技术

以飞机装配工艺为例,过去采用样板、模线、样件等模拟量传递方式,效率,准确度,产品质量都比较低。而现在基于计算机的先进装配协调方法采用了数字量传递的方式,效率,准确度都有很大提高。然而无论是哪种装配,协调工艺都决定于其设计。因此要提高装配,协调工艺必须从设计入手。数字化设计技术以CAD/CAM技术、计算机技术、网络数据库技术和信息集成技术发展等为基础,主要内容有产品数字化定义、虚拟装配和并行技术等。产品数字化定义是应用计算机来描述和定义产品的研制,它的目的是对在产品全生命周期的数字化过程中所包含的信息进行定义和描述,以及这些信息之间的相互关联。产品数字化装配是指对已进行数字化定义的产品零部件通过计算机实体进行虚拟装配,确定航空部件的配合是否符合尺寸,配合要求是否存在超差等等。使在设计过程中的可能不合理因素减到最少,从而减少在制造过程中的更改与返工。由于采用了数字化设计技术,使波音777研制周期缩短了一半,降低了25%的成本,减少了75%的出错与返工率,产品质量得到了大幅度提高。并在波音777飞机开发与制造过程中的成功应用,使数字化设计技术的重要性得到充分认识。

2集成技术

由于航空产品有研制周期长,结构复杂,制造精度要求高,产品使用期长,售后情况复杂,研发生产合作国际化等特点,因此集成技术显得尤为重要。作为集成制造技术的重要组成部分,计算机集成制造技术通过计算机技术将CAD、数控编程、数控加工等原本各自独立的环节整合为一个有机整体,以达到提高产品质量,缩短制造过程,减少生产成本的目的。现代集成技术包含有信息集成、过程集成和企业间集成。通过现代集成技术可实现数字化、网络化、全球化制造。完成波音777研发生产后波音公司,开始实施DCAC/MRM(飞机结构设计与控制/制造资源管理),以达到从用户订单、设计制造、最终到交付使用的统一信息和过程管理的目的。现代集成技术可以解决以前单一数据源方面存在的问题,统一管理产品数据、生产管理过程数据。确定信息的完整性、唯一性、协调性、有效性、无冗余和安全性。将资源管理、设计、制造、销售、服务等5个过程的信息整合为一体。

3数控加工技术

先进的数控加工技术是当代航空制造业中一个重要的组成部分,也是柔性制造技术的基础。随着我国近年来大量新机研制项目的开发,大量的业务都需要国际间合作,各航空企业所保有的数控机床总量已大幅度增加,通过数控机床加工的零件数量明显增多。在航空制造所涉及的零部件主要特点是结构复杂、零件数量多,表面形状复杂。因此加工技术难度很大,在此需求背景下,对航空行业的数控加工技术水平有很高要求。为实现这一要求,以特征技术为基础的针对飞机零部件和发动机机构件的CAD/CAPP/CAM集成系统技术,分布式的DNC技术,CAP智能化技术,网络数据库以及相应的数据管理技术,车间生产组织、管理调度技术有了很大的提高。

4虚拟制造技术

虚拟制造的实质是通过相关软件在计算机中的制造,可在计算机中演示完整的制造过程。通过虚拟制造可以验证制造过程的安全性,并且可以进一步优化生产方案。从而保证设备与操作人员的安全,降低产品的生产成本,缩短生产工期,提高生产效率。

全文阅读

航空航天器制造业技术创新过程的经济学分析

摘 要:运用回归分析法建立模型,对我国航空航天器制造业技术创新过程中投入与中间产出的关系以及中间产出与最终产出的关系进行了实证研究。结果显示,技术创新投入R&D经费、科学家和工程师数量的增加会带来中间产出专利申请量更大比例的增长,而专利申请这一技术创新中间产出又对最终产出产品销售收入有相当大的促进作用。

关键词:航空航天器;技术创新;回归分析

中图分类号:F426.5 文献标志码:A 文章编号:1673-291X(2016)11-0180-02

引言

技术创新在当今世界性竞争中起着越来越关键的作用,是一个国家竞争力的主要源泉,航空航天器制造业作为高技术产业,技术创新的能力与作用更加重要。我国航空航天器制造业无论是用于技术创新投入的资金或是受过良好教育的研发人员,均十分稀缺。这就要求在对航空航天器制造业技术创新投入进行决策时,必须有坚实的科学根据,以使有限的技术创新资源得到充分利用。但是,长期以来,由于科技数据的限制,有关中国航空航天器制造业技术创新投入产出的定量分析相对匮乏。笔者通过对航空航天器制造业技术创新投入产出的定量分析,得出这一高技术产业技术创新的能力与作用,为相关政策制定者提供依据,使决策更为科学客观。

(一)指标选择

技术创新的衡量涉及到创新过程的三个主要方面:创新投入,如资金和人力资源;创新的中间产出,如新发明和新知识;创新的最终产出,如不断提高的收入和利润。在考察技术创新过程时,采用R&D费用和从事研究的科学家和工程师数量这两项指标作为技术创新投入指标,专利申请量作为技术创新中间产出指标,产品销售收入作为技术创新的最终产出指标。

(二)数据说明

全文阅读

MBD技术对航空制造业的影响

《机械设计与制造工程杂志》2014年第六期

1MBD模型在企业中的应用

1.1MBD技术在产品设计中的应用近年来,MBD技术在航空制造行业已经得到了长足发展,特别是在设计部门,已经完全实现了全三维方式,并且设计数据的发放以三维模型作为唯一的数据源。MBD模型中包含了产品的几何属性(尺寸、公差等)、制造属性(材料定额等)和管理属性(产品结构、EBOM等),只需要将MBD模型作为唯一数据源下发到工艺部门即可,工艺人员可以从MBD模型上获取产品全部信息,进而进行三维工艺设计,保证了整个过程的单一数据源特性。为了能够规范基于产品的模型定义方法,企业需要根据实际需求定义一系列标准来支撑,如:建模标准、尺寸和公差标注标准、注释标准等等。基于MBD的产品设计将产品的设计属性、工艺属性、制造属性、检测属性等都高度集成在三维实体模型上,取代了传统由三维实体模型描述几何形状信息,二维工程图纸定义尺寸、公差和工艺信息的分步式描述方法。

1.2MBD模型在工艺设计中的应用在MBD环境下,工艺设计统一在CAD平台下进行,工艺信息集成在PDM系统中进行管理。工艺部门通过PDM系统接收到设计部门发放的三维MBD模型后,主要进行以下几个步骤的工作:(1)进行工艺性审查,主要对设计模型的几何特征、产品属性、尺寸标注、基准、技术要求等进行审查,发现问题及时提交设计部门,设计部门修改后重新下发;(2)进行EBOM到MBOM的转换,所谓EBOM是指设计部门发放的产品结构,而MBOM是制造部门从加工、装配角度搭建的产品结构,MBOM去除EBOM的虚拟件转换成了实体件,并增加了工装等工艺资源;(3)进行工艺路线规划即构建基本的工艺路线卡,进而对每道工序进行详细设计,即针对每一道工序完善加工方法(数控加工、表面处理、检验等)并关联相应的制造资源(刀具、夹具、设备等),其中在数控编程阶段,需要生成每道工序的加工模型,用于NC程序的编制和检验,并结合关联的制造资源(机床、刀具、夹具等)进行仿真验证,最后将验证结果(NC代码、仿真动画等数据)保存回对应的工序;(4)进行可视化,生成三维可视化工艺文件进行审核后提交PDM系统进行管理,并通过MES下发车间生产。图2所示为基于MBD模型的三维加工工艺设计流程。

1.3基于模型的制造资源库管理企业需要构建自己的三维制造资源库,将企业所有的制造资源进行统一管理。三维制造资源库包含企业所有的机床设备、刀具、夹具、量具、各类工装资源等,与企业的资源实物通过条码或二维码等进行管理,并与资源库中的三维轻量化模型一一对应[3]。统一的资源库管理使得企业在进行生产线规划、生产力能力评估、三维工艺设计时,可以直接调用资源库的三维模型进行仿真验证,提高了前期规划效率和准确度。例如在三维工艺设计阶段,需要调用资源库中的机床、刀具、工装等资源进行数控加工的验证仿真,如果需要制造专用工装,则发起专用工装设计申请,由工装设计部门进行设计,最后将设计完成的三维工装模型保存到工装资源库中。

1.4基于模型的现场执行基于PDM系统将工艺数据(三维作业指导书、工时定额、材料定额等)通过MES系统传递到制造车间。车间生产计划员根据接收到的相关工艺数据,结合车间资源、库房资源等信息进行计划排产和生产调度。车间工人利用现场终端,访问PDM系统中保存的工艺数据,可以对三维工艺模型进行旋转、缩放、测量尺寸、标注等操作,以及查看三维作业指导书。在制造过程中发现设计或者工艺问题时可以直接在三维模型上进行标注,及时反馈给设计、工艺部门进行修改,重新下达。

2结束语

近年来,MBD技术已经成为了当今航空制造业的一个热门,也是促进航空制造业发展的关键。本文以MBD技术为核心,构建了基于模型全三维数字化制造体系,并对MBD技术在产品设计、工艺设计、现场制造和制造资源管理中的应用场景进行了探讨。研究了MBD技术在航空制造业中的应用,将MBD技术的应用从产品设计推广到工艺、现场制造等方面,对MBD技术在航空制造业中的应用具有一定的指导作用。

全文阅读

民用航空制造企业技术管理的平衡计分卡实施研究

【摘要】随着互联网技术的高速发展,加速了全球经济一体化的进程,激烈的市场竞争环境,对企业的发展造成巨大影响。因此,在企业绩效管理中利用平衡计分卡方式,能够弥补传统绩效管理中很多不足之处。通过对民用航空制造企业技术管理的平衡计分卡实施进行研究分析,希望能够为我国民用航空制造企业技术管理提供全新的管理方式,以此提升管理效率。

【关键词】民用航空;制造企业;平衡计分卡

平衡计分卡能够从财务、顾客、内部流程、以及学习创新等四个方面,真实反映和评价出企业绩效。平衡计分卡不仅仅是新型的绩效考评系统,而且作为一项战略性绩效创新工具,在民用航空制造企业中发挥重要作用,能够加强企业的管理秩序,提升管理效率,同时能够帮助企业进行长期战略规划,促进制造企业平稳持续发展。

一、平衡积分卡理论概述

平衡计分卡是由美国学者较先提出,作为一种较为先进、较为全面的绩效评价机制,改变了传统绩效管理中财务为中心的管理模式,充分同企业绩效和未来战略目标相结合,在实际管理中,将管理内容详细分为财务、客户、内部过程、以及学习创新等四个方面。平衡计分卡能够有效的改变传统的,利用财务指标进行绩效评价的状况,同时能够对企业财务和非财务衡量方法、主客观评价、以及未来发展战略进行合理完成[1]。

二、平衡记分卡下的制造业绩效评价体系的建立

根据制造企业的特异性特点,将平衡积分卡的基本原理作为基础,可以对制造业的绩效评价系统进行研究,研究主要体现在以下4个方面。

2.1体现在财务指标的评价

全文阅读

江苏航空航天制造业发展分析

江苏是制造业大省,正处于转型升级的攻坚期,迫切需要抓住国际资本转移与产业结构调整的机遇,构造制造业竞争新优势。中央对航空航天制造业的发展日益重视,许多省(市)也提出了新思路与新举措。江苏应从战略高度更加重视航空航天制造业的发展,积极主动地参与国际航空航天产业的分工和竞争,形成具有江苏特色和优势的航空产业基地,从而保持在全国领先的地位。

一、江苏拥有发展航空航天制造业的较好基础

江苏发展航空航天制造业的基础与优势,主要包括以下几个方面:

紧邻“大飞机”落户地上海。上海是长三角地区经济发展的龙头城市,对全国各区域经济发展的影响力在不断增强,而“大飞机落户上海”所带来的要素集聚效应,将对包括江苏在内的诸多省域航空制造业发展产生深远影响。据估算,国家对整个大飞机的预期研发投入在300亿元到500亿元之间,整个研制过程能带来巨大的产业拉动、价值传导和经济增长效应。在制造过程中,一架大飞机需要由数千家配套厂商生产并提供共计300万到500万个零部件,由此,拉动配套产业,使其得到不断升级的机会,并最终形成庞大的产业链。另一方面,江苏与上海的关系愈加密切,时空距离在不断缩短,这有利于江苏抓住“大飞机落户上海”的发展契机,“抢先”对接,并依托由此而产生的产业集聚效应,形成航空工业的产业链。

雄厚的经济基础。江苏的强大经济实力为发展航空航天制造业提供了充足的资金支持。2012年全省实现生产总值54058.2亿元,位居全国第二,按可比价格计算,比上年增长10.1%,高新技术产业投资4059.0亿元,增长5.6%,占工业投资的比重达24.5%。同年,江苏省高新技术产业实现产值45041.48亿元,比上年增长17.36%,完成出货值11460.94亿元,比上年增长4.96%;其中,航空航天制造业实现工业总产值218.30亿元,占高新技术产业总产值的0.48%,该行业已成为江苏高新技术产业的主导产业之一。可见,在经济强有力的支撑下,江苏航空航天制造业的发展潜力巨大。

强大的科技实力。作为科技强省,江苏研发投入资金雄厚,境内的航空院校和科研院所数量众多,具有较大的人才技术优势。2012年,全社会研究与发展(R&D)活动经费1230亿元,占地区生产总值的2.3%,已建国家和省级重点实验室105个,科技服务平台296个,工程技术研究中心2141个,企业院士工作站326个。在航空航天器制造领域,江苏R&D人员全时当量、R&D经费内部支出、科技机构数自2000年起开始稳步上升,2011年分别达到839人年、1.45亿元、20个,其中,内部支出达到历史最高值。尤其在南京地区,南京航空航天大学、南京大学、东南大学、南京理工大学等航空航天相关院校和研究院所的数量众多,拥有以航空宇航科学与技术为核心的国家重点学科群,每年培养输送1000多名航空专业研究生,为航空工业发展提供可观的研发人才。

江苏在航空航天领域所投入的科技人力、物力、财力,对创新能力的提升已经开始发挥作用。中航工业集团公司的607所、614所、716所,中国电子科技集团公司的14所、28所、55所、58所,以及南航大无人机研究院都是国内专门从事关键技术研究的单位,研发水平达到或超过国家先进水平,有的甚至达到国际先进水平。可见,以经济繁荣为后盾,江苏强大的科技实力正逐步转化为航空航天产业创新发展的推动力。

初具规模的产业集聚载体建设。江苏省内各市根据自身地理特点及产业优势,已经打造出一批航空产业园或航空产业集群,成为行业集聚发展的重要载体。江苏先后成立了南京江宁的空港产业园、江苏省航空动力高技术特色产业基地、昆山航空产业园、镇江新区的航空材料科技产业园、滨海新区的航空装备制造产业园、江苏蓝天航空航天产业园等,成为自主创新和高新技术产业的重要集聚。

全文阅读

我国航空制造技术的现状及发展前景

《江苏航空》2017年第2期

摘要:近年来,随着我国航空制造水平的不断提高,航空业制造出的产品有了长足的进步,在产品研发、加工等方面实力不断增强。随着各项新技术、新材料的应用及加工方式的升级,将会促进我国航空制造技术的进步。

关键词:航空;制造;现状;发展趋势

随着我国综合实力的提升,我国的航空制造技术在近年来也到取得了很大的进步。但是在当前的国际环境中,其它国家的航空制造技术也在突飞猛进的发展,给我国航空业的发展带来了很多的压力。在目前形势下,国内许多领域的发展对航空业提出了更高的要求。航空制造业需要加强自身技术水平的提升和制造能力的提升,适应国内、国外发展的需要。

1我国的航空制造的现状

我国的航空制造业已经有了60多年的发展历史,多年的发展,造就出一批技术过硬的航空专业技术人才,建成了许多具有一定技术支撑的研发生产基地。航空制造业的整体水平有了很大的提升,在重点工艺技术攻关以及高新技术的开发工作中取得了很大的成绩。通过消化引进具有国际先进水平的制造设备,制作加工能力得以提升。计算机参与到了从产品设计、信息集成、产品制造、保养、维修等多个方面的工作,一大批具有自主知识产权的项目得到推广。但还存在着以下问题:

1.1新材料、新工艺的发展不平衡

目前,在航空制造领域,已经开发出许多的新材料,这些新材料具有许多优良的使用性能,但是由于各种原因,这些新材料没有被国内的航空业广泛使用,新材料在国内航空业的推广还需要加强。一批新型工艺得以应用。如新型焊接技术、钛合金技术,精密成型等技术在航空业得到广泛应用,但是部分制造厂家没有全部采用这些新技术,还需要加强这些新技术的普及力度。

全文阅读

优化理论与技术在航空领域的应用

摘要:伴随着我国社会经济的飞速发展和科学技术水平的不断提高,促使我国的航天事业发生了翻天覆地的变化,紧随航空领域的发展,产生了一种优化理论与技术。优化理论与技术起源于航天领域当中,最早被应用于对飞行器的总体优化设计。近些年来,随着航空领域的巨大进步,对航天产品的制造提出了新的要求,这就更加促进了优化理论与技术在航空制造领域中的应用,并不断扩展其应用领域。本文将对优化理论与技术在航空制造领域中的应用做简要的分析。

关键词:优化理论与技术;航空制造领域;应用

所谓优化,是指运用最有效的科学知识和最先进的计算机技术,加之对优化模型的解读,进而得出最合理的方案。目前,优化理论与技术已经被广泛的应用到航空领域的各个方面,尤其是在航空制造企业当中,优化理论技术已经成为最受关注的内容,并且为促进航天事业的发展发挥着巨大的促进作用。

一、优化理论与技术在航空制造领域的应用

(一)在制造前期的应用

伴随着科学技术的巨大进步,我国的航空制造企业已经不同于传统的机械制造企业,它将许多尖端的高新技术融为一体,形成了一种新的生产技术。这种新型的生产技术中包含了电子学、信息学、机械化、管理学、生物学等等多种高新技术,因而具有极其复杂的特点,仅凭人脑或是现有的技术难以保证航空制造企业的快速发展,基于这一要求,引进了一种优化理论与技术。这种优化理论与技术在航空企业进行生产的过程中,在产品设计、加工和装配、管理等过程中都发挥着巨大的作用。

在航空制造企业生产前期,优化理论与技术能够为产品设计提供大量的数据和信息,尤其表现在设计产品的规格、功能等方面。优化理论与技术能够充分结合产品生产的总要求,并按照这一要求,帮助设计人员找到最合理的设计要求,对产品的各个功能、结构、规格都进行细化和分解,并将这些细腻的要求进行合理的组合,为设计人员提供最有价值的参考,真正实现生产前期对产品设计的优化。

(二)在生产过程中的应用

全文阅读

中国航空制造业产业升级路径探析

我国作为航空产品消费大国,对于全球航空制造业有巨大影响力,但是通过对全球航空制造业的产业价值链进行深入分析发现,我国航空制造业在全球价值链中处于低端环节,缺乏核心技术能力,难以升级到产业链的高端市场。航空制造业价值链属于生产商主导型,掌握战略单元的企业是拥有核心技术的大型跨国企业,我国要实现航空制造业在价值链中的环节攀升,必须依靠企业自主创新与国际风险合作的紧密结合。在自主创新的基础上争取与领导厂商的风险合作,在风险合作的基础上积极实现自主创新。最终实现我国航空制造产业的产业价值链升级。

一、发达国家航空制造产业的发展趋势

民用航空制造业尤其是商业大飞机的技术水平代表了全球制造业的最高水平和技术实力,也是世界各个工业国家经济和综合国力的基础。根据航空制造业的发展历程来分析,未来航空制造业的发展趋势主要表现为四个方面:

(一)新飞机载客量更大

随着飞机型号的不断发展,飞机设计研发从最初的载客量200以下的中型飞机逐步发展为载客量200以上的双通道宽体大飞机。随着未来航空运输市场需求的快速增长,航空制造企业为了适应运输市场的巨大需求会继续研发和设计载客量更大、飞行里程更长的巨型飞机,比如空客A380就是巨型宽体飞机,即目前世界上载客量最大的飞机,载客量为550-850人。同时波音公司为了竞争A380 ,开发了747-8,载客量为467人。

(二)技术应用更为先进

从波音的最新机型787和空客的A380来看,航空制造业是现代高科技的综合运用,囊括了电子、光学、信息科学、材料科学、生物科学、激光学等最高端的技术水平。随着新材料、新结构加工、成形技术的不断创新,集成的整体结构和数字化制造技术构筑了新一代飞机的架构。

首先,复合材料的应用会成为未来飞机制造水平先进性的一个重要标准。如波音787的最大特点就是大量采用复合材料,使用比例达到50%,使得飞机具有低燃料消耗、低污染排放、低噪音、低成本、高可靠性、高效益及舒适的客舱环境。其次,用新的结构制造技术,将不同材料之间胶结结合起来,使得整体可以兼具不同材料的优点而同时克服各自的缺点,从而使得飞机的结构寿命更长,如空客A380就采用了此种技术来制造机身上壁板及整个客舱上半部分,使其重量减轻800kg,同时具有抗疲劳性更好、制造成本更低等优点。最后,数控技术的应用和成形技术的创新。飞机大型复杂整体结构件采用高速数控加工技术是飞机加工技术发展的一种趋势;开发配套的更先进的高速数控加工技术是航空制造业发达国家整体系统工程的一个重要组成部分;同时精密钣金成形技术、超塑成形技术和先进的焊接技术都是未来飞机制造业的技术发展方向。

全文阅读