首页 > 范文大全 > 正文

便携设备电源技术的研究

开篇:润墨网以专业的文秘视角,为您筛选了一篇便携设备电源技术的研究范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

1现代便携设备电源原理

1.1便携式电源原理粗电指电能质量较差一次交流电,实际应用多数需将其转换为精电即直流电。根据输出,电源可分为4类:整流AC-DC、逆变DC-AC、变频AC-AC和直流变换DC-DC。电源组成原理不同可分为LDO线性直流稳压电源和开关电源,开关电源分为隔离型开关电源和非隔离型开关电源[1]。LDO线性直流稳压电源,纹波小、功耗高、效率低30%~40%,不适合高效便携式电子设备;隔离式开关采用变压器调节输出电压,安全、高效,效率能达到80%,但技术难度大,成本高,体积大,用于较大电子设备;现代便携式电子设备一般采用锂电池供电,电源电路采用DC-DC直流变换,将电池输出直流电压转换成系统需要的各种直流电压,转换效率高、静态电流小,是现代便携式电子设备常用的电源转换电路[2,3]。DC-DC变换是将固定的直流电压变换成系统所需的直流电压输出,经直流斩波,将输入电压斩成脉冲方波,由储能元件实现升压或降压,整流、滤波后输出高效/,!/率、高精度、高稳定度二次直流电压[4]。DC-DC变换电路控制方式分为硬开关技术和软开关技术,硬开关包括PWM脉冲宽度调制和PFM脉冲频率调制,PWM调制方式不改变开关周期,改变开关占空比控制输出电压幅度;PFM调制方式是占空比不变,调制信号频率随输入信号幅值变化;软开关谐振变流器是利用LC串并联谐振网络实现开关零电压导通ZVS和零电流关断ZCS,实现开关开通和关断功耗为零,减小变换器开关损耗。

DC-DC直流变换器电路形式主要有:Buck降压斩波器,Boost升压斩波器,Buck-Boost降压或升压斩波器等,根据便携式设备要求选择不同的电路形式[5]。1.2便携式电源节能技术现代便携式设备电源技术成熟,便携式设备连续工作时间、待机时间、使用寿命成为各大厂商竞争焦点,增加便携式设备连续工作时间和待机时间最直接的方法增加锂电池容量,提高电源转换效率,降低系统功耗。根据摩尔定律,集成电路内部器件集成度每18个月翻一翻,CPU数据吞吐量增大处理速度提高,系统功耗不断增加,锂电池发展速度远跟不上集成电路发展速度,电池发展相对滞后已经成为制约便携式电子设备发展的一个瓶颈[6]。提高便携式设备电源转换效率主要方法有提高电源整流器件效率,降低电源内部静态电流。传统PWM控制DC-DC变流器,系统平均功耗Pav=CO×V2DD×f,CO负载等效电容,VDD电源电压,f开关频率,看出DC-DC变换器功耗与开关频率成正比,与电源电压平方成正比,降低变换器开关工作频率能有效降低开关动作次数降低功耗,代价是降低CPU数据处理速度,电源装置中无源器件体积增大静态功耗增大,;当前处理器主频不断提高数据处理速度不断加快,降低系统功耗只有降低电源电压[7]。

DC-DC直流变换器主要损耗为整流二极管和续流二极管,即使采用快恢复二极管FRD、超快恢复二极管SRD和肖特基二极管SBD,在二极管上产生较大压降,降低电源效率,传统二极体整流电路已无法满足现代便携式电子设备,当前便携式设备电源基本采用同步整流技术,用通态电阻极低功率MOSFET,代替整流二极管,降低整流二极管导通压降,同步整流技术要求栅极电压与被整流电压相位保持同步,有效降低整流损耗,提高电源效率[8,9]。便携式设备电源智能管理技术,指按时间顺序对设备电压和电流智能化管理,根据用户使用情况不同实时控制模块输出电压,有效分配电源功率,降低电源模块静态电流,降低空闲设备能耗,最大限度减小损耗提高系统效率。硬件管理指硬件电路选择静态电流小的COMS器件,降低静态功耗;软件管理指使用便携式电源管理器对电源动态管理,降低空闲设备功耗。现代智能手机功能十分完善,使用不同功能供电不同,例如接打电话、发短信、听音乐、无线上网、看电影,需要不同供电,采用电源智能管理技术能有效降低系统功耗,提高便携式设备电源效率[10-11]。便携式设备电源采用系统整流模块休眠技术提高电源效率,整流模块休眠技术根据输出电流大小实时动态控制电源系统各套整流模块,及时关闭不需要的整流模块,降低系统负载损耗和空载损耗同时保证输出,整流模块休眠技术根据实际需要,采用软件设置休眠时间和休眠次序。整流模块休眠技术要求电源系统至少要有两套以上整流模块,提高电源效率同时也增加了硬件开销,提高便携式设备的实际成本[12]。

2现代便携式设备电源应用

2.1MC34063原理MC34063输入电压范围宽,静态电流低,输出驱动电流大,振荡频率高是一款典型的双极性现代便携式设备DC-DC电源控制器,输入电压3.0~40V,输出电压1.25~40V,最大输出电流1.5A,开关管集电极与发射极最大电压40V,开关振荡频率100Hz~100kHz,可实现电源升压、降压、反向等变换,效率高达80%以上[13],MC34063内部模块原理及引脚功能如图1所示。MC34063内部包含1.25V带隙参考电源、电压比较器、振荡器、逻辑控制器和开关管。MC34063DC-DC变换器第5脚输入电压与1.25V带隙参考电压比较,比较后结果输入逻辑控制器与振荡器输出振荡方波相与,相与后逻辑电平输入RS触发器控制开关管T1和T2;振荡器内部包含恒流源,第3脚外接定时电容调整振荡频率,外接电容充电,振荡器与比较器同时输出高电平,RS触发器置1开关管导通。电流IS检测端实时检测7脚电阻RSC电压,电流检测端电压超过300mV,振荡器外接电容CT快速充放电,控制开关管占空比,稳定输出电压,MC34063应用电气参数如表1所示,应用条件不同电气参数适当调整[14]。2.2降压电路及参数计算用MC34063DC-DC变换器设计一个输入电压+5V输出电压+3.3V纹波小于10mV降压直流电源,输出电流IO(max)=500mA原理如图2,降压电路电流流经检测电阻R1、开关管T1与T2、电感L1、电容C1、续流二极管D1、负载RL,通过比较器反向输入端第5脚外接电阻R2与R3监视输出电压Vout=1.25×(1+R2R3)。

DC-DC变换器处于TON状态,RS触发器S端输入高电平,开关管T1与T2导通,电流经开关管集电极到发射极,第2脚外接储能元件电感L1充磁电容C1充电,电感L1达到最大峰值电流IPK停止充磁,续流二极管D1反向截止;DC-DC变换器处于TOFF状态,RS触发器S端输入低电平,开关管T1与T2截止,第2脚外接储能元件电感L1和电容C1放电为负载提供电流,续流二极管D1导通,由于电感电流不能突变,输出电流方向不变,只要开关频率与储能元件充放速度足够快负载可以得到连续的直流电压,实现降压[15]。根据运放“虚短”和“虚段”,集成电路内部比较器第5脚输入电流为零,取R3=1.2kΩ,输出电压Vout=1.25×(1+R2R3),得R2=2kΩ,通过输出回路电阻R2与R3电流I=VOUTR2+R3=1mA,电阻R2功率P=U2×I=2mW,电阻R2与R3选择0.125W;续流二极管D1选择肖特基二极管1N5819,最大反向浪涌电压VRRM=40V,最大正向浪涌电流IFSM=25A,二极管均方根电压VRMS=28V,平均整流电流I(AV)=1A,正向压降VF=0.6V。设MC34063开关振荡频率f=20kHz,周期T=50μs,由参数手册得TONTOFF=VOUT+VFVIN(MAX)-VSAT-VOUT=3.3+0.65-1-3.3=3.90.7,TON≈40μs,TOFF=7μs,振荡电容CT=4×10-5×TON=4×10-5×40×10-6=1600pF,开关管电流IPK=2IOUT=1A,第7脚电流检测引

脚限流电阻RSC=VIPKIPK=300mV1A=0.3Ω功率0.25W,电感L1为VIN(MAX)-VSATIPK×TON=5-0.61×50uS=220uH,输出电容CO实际应用选择100μF耐压10V电解电容[16]。2.3升压电路及参数计算用MC34063DC-DC变换器设计一个输入电压+3.3V输出电压+5V纹波小于10mV升压电源,输出电流IO(max)=500mA原理如图3,升压电路电流流经检测电阻R5、开关管T1与T2、电感L2,续流二极管D2,负载RL,比较器反向输入端监视输出电压,Vout=1.25×(1+R5R6),R6取1.2kΩ,R5为3.6kΩ,功率0.25W。当DC-DC变换器管T1与T2处于TON状态,DC-DC变换器形成2个回路,即电感回路和电容回路。回路1:由电容C6、负载RL构成,电容C6放电,保持电源输出电压和电流幅度稳定、方向不变,续流二极管反向截止,由电容提供能量;回路2:由电感L2、开关管T1与T2构成,电感L2将电源电能转变为磁能存储,充电电流由0到IPK;当开关管T1与T2处于TOFF电感中磁能转换为电能输出提升输出电压,实现升压[17]。 3性能参数测试

  MC34063DC-DC变换器电路测试仪器有优利德(UNI-T)四位半数字万用表UT56,泰克(Tektronix)100MHz数字存储示波器TDS2014C,负载电阻采用10Ω额定功率5W水泥电阻,经实际测试电源性能参数如表2所示。由MC34063DC-DC构成的便携式设备电源变换器输出稳定可靠,纹波小,线性调整率和负载调整率优良,效率高,自适应性强,完全能满足便携式设备实际使用要求。

4结束语

MC34063DC-DC变换器电源控制电路,体积小,成本低,效率高,静态电流小,待机功耗低,有效提高了现代便携式设备电源电池待机时间、工作时间和使用寿命,是现代便携式设备理想电源变换器,可广泛用于实际生活。