首页 > 范文大全 > 正文

新型牵引供电系统初探

开篇:润墨网以专业的文秘视角,为您筛选了一篇新型牵引供电系统初探范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:基于国内外交、直流电制牵引供电系统的研究成果,深入分析其存在的主要问题,提出了一种新型牵引供电系统的构想。文章阐述了该系统的基本结构以及电压等级和频率确定,并对其性能和发展形势进行全面分析,得出以下结论:该供系统能有效克服现有牵引供电系统中存在的杂散电流、负序电流和过分相的等问题。

关键词:牵引供电系统;城市轨道交通;贯通供电;交流传动

中图分类号:F407文献标识码: A

Primary Study on ANew Type of Traction Power Supply System

Abstract: Based on the research achievements on AC and DC traction power supply system,to analyze the existent problems, a new type of traction power supply system was proposed.The basic structure, selection of voltage level and frequency were presented. By analyzing the performance and future development of this system, a conclusion was obtained: the system which couldovercome the shortcomings of stray current, negative-sequence current and phase splitting in the existing traction power supply system.

Key words:traction power supply system;urban rail transmit;transfixion power supply;AC drive

0 引言

随着我国城市化进程的不断推进,城市公共交通拥挤和环境污染问题将越来越严峻。在这特定历史条件下,城市轨道交通成为了必然选择。城市轨道交通包括地铁、轻轨和有轨电车等公共交通方式。目前,城市轨道交通项目大多采用电力牵引。为了缓解能源需求和环境污染的矛盾,如何提高电力牵引运行效率成为了当下的一大研究热点。

自1879年第一条电气化铁路问世以来,经过一个多世纪的发展,电力牵引供电技术已经相当成熟。电力牵引供电主要有直流、三相交流、单相低频交流和单相工频交流四种电制。然而,以上各种电制都存在一定的弊端。因此本文提出了一种介于单相工频电流电制和直流电制之间,而又区别于传统低频交流电制的,能扬长避短并根据自身需求可选择供电频率的低压低频牵引供电系统。该系统既克服了直流电制存在杂散电流(大地迷流)的电化学腐蚀和直流电弧不易切断两大难题,又解决了工频交流电制产生的负序电流和电分相问题。此外,低频供电可大大降低牵引网的电压损失,有效地提高了电力牵引的运行效率。

1 牵引供电系统现状分析及存在问题

世界上第一条电气化铁路采用150V直流电制,在此后的发展历程中,电力牵引供电制式经历了低压直流、三相交流、单相低频交流和单相工频交流的演变过程。其中形成了以750V、1500V和3kV三个电压等级为主的直流牵引供电制式。1915年后,法国、瑞士采用了3.6kV三相交流电制,以及以德国、瑞典为代表的北欧国家开始采用11kV、15kV的16 2/3Hz单相低频交流电制。1932年,匈牙利在布达佩斯-黑基也什霍洛姆铁路上首次采用了16kV的单相工频交流电制。此后以电压等级为25kV的工频单相交流电制在电气化铁路中占据了主导地位,在世界电气化铁路历程中所占比高达39%。

我国电气化铁路发展起步较晚,主要是吸收了国外电气化铁路发展的经验。目前,干线电气化铁路普遍采用25kV单相工频交流电制;在城市轨道交通领域主要采用750V、1500V直流电制,其中对于大运量线路大多采用1500V,中小运量线路采用750V。20世纪80年代以后,我国大力建设电气化铁路,迄今为止,我国电气化铁路里程以跃居世界前列。自1998年以来,我国先后开工建设了20多个轨道交通项目。为了有效推动城市轨道交通的发展进程,1999年国家计委提出城市轨道交通全部车辆和机电设备的平均国产化率要确保不低于70%。在国产化政策的带动下,我国城市轨道交通建设也进入了飞速发展的阶段。预计到2020年,我国铁路运营里程将达到12万公里,其中电气化铁路比重将达到60%;城市轨道交通线路达到177条,总里程6100公里。

目前我国已基本掌握干线电气化铁路和城市轨道交通电气化设计、施工、技术维护,但现存牵引供电系统仍存在一些问题。为了深刻理解单相低频交流供电制式带来的优势,对直流和交流供电制式进行分析,分别总结两种电制存在的不足之处。其中直流电制主要存在以下两个方面的问题[1-5]:

(1)杂散电流的影响。选择直流电制,采用钢轨回流,则必然产生杂散电流。杂散电流对道床钢筋结构、隧道内钢筋结构和沿线的金属管线等金属设施都将产生电化学腐蚀。此外,杂散电流还可能对地下石油管道、天然气管道等造成潜在安全隐患。尽管,目前对于杂散电流有一定的防护措施,但是治理和维护的难度大、成本较高,并且无法根本消除杂散电流的不良影响。

(2)直流保护成本问题。直流电弧灭弧一直是直流保护的技术难题。由于直流电不存在过零点,导致直流灭弧技术难度较大。目前,ABB、Siemens和Schneider等几大电气设备生产商已经具备生产高压直流断路器的能力。但是直流断路器结构复杂,造价高,使用寿命短。目前为止,我国直流断路器主要是依赖进口。

对于交流供电制式,包括低频交流和工频交流,其中低频交流需要独立电源,这种供电制式不符合中国国情。目前我国所采用的是25kV工频交流电制,主要存在着以下三个方面的问题[6-10]:

(1)负序电流及谐波对公共电网的影响。由于电力牵引负荷具有非线性和不对称性的特点,它将产生的三相不平衡负序电流和高次谐波注入到三相对称的公共电网中,会导致发电机转子过热、电力变压器寿命缩短、输电线路损耗增加和电缆寿命缩短、继电保护装置误动、安全自动装置无法正常切投等一些列不良影响。

(2)牵引网电压稳定性问题。电力机车对牵引网电压水平的要求一般为19~29kV。实际上牵引网电压波动很大,往往超出了网压水平的要求范围,其中电力机车负荷冲击对网压波动的影响最为明显,牵引网电压损失也是影响网压水平的重要因素之一。这对于电力机车正常运行将造成不利影响。

(3)电分相问题。受供电臂距离的影响,由于各供电臂相位不一致,所以设有相间绝缘保护段,即电分相,该供电死区长度约为30m。电力机车在经过电分相时,需要退级、关辅助机组和主断路器,惰行通过供电死区后逐项恢复。列车运行中每隔20km左右就需要通过一个电分相,如此频繁复杂的操作这对于司机而言难度较大。此后,便产生了自动过分相技术和同相供电技术。前者或技术复杂或性能一般且可靠性较差;后者则价格昂贵,可靠性也需进一步提高。

由此可见,无论是采用直流电制还是工频交流电制,都将面临一系列的难题。虽然在克服这些难题的领域上取得了长足进步,但问题仍没有得到理想的解决。因此,在吸收了现有牵引供电系统优点的基础之上,本文提出了一种新型低频牵引供电系统,有效地规避了上述种种问题。

2 低压低频牵引供电系统

2.1 低压低频牵引供电系统结构

该低压低频牵引供电系统是在现有直流牵引供电系统的基础上,借鉴了交流电制的优点而提出的。目前,直流牵引供电系统是从三相公共电网取得电能后,通过牵引变压器降压后再由多脉波整流器转换为750V/1500V直流电,并由牵引网进行电能传输,电力机车通过受电弓从牵引网上获取电能[11]。低压低频牵引供电系统是将多脉波整流器换成了三电平变频器,由它转换为低频的单相交流电为电力机车供电,电压等级应根据大功率变频器技术水平和设备成本而定,其供电网络的结构流程图如图1所示。公用电网三相交流电网经过牵引变压器降压之后经变频器变频为单相低频交流电在牵引网上传输,机车受流后通过车载变压器降压给交流电机供电。

图1 低压低频牵引供电网络结构流程图

2.2 电压等级的确定

电压等级是指牵引网电压的大小,它对于机车动力、供电距离和工程造价有重要影响。确定电压等级不仅仅要考虑经济因素,还需要综合实际线路的运量以及设备的可靠性和技术水平等因素[12]。随着城市规模的不断扩大,城市轨道交通线路客流越来越大,对于机车运量的要求也越来越高。由于城市轨道交通线路多为地下隧道且车站属于开放式,出于对绝缘水品和安全性的考虑,城轨不宜采用过高的电压等级。综合以上种种因素,牵引网电压等级应确定在3000V~4000V左右。如此所需的变电所数量较少,可减少设备用房和设备投入;同时具有较长的驱动距离,即使是特大城市中站间距离较长的远郊线路,也能满足其供电要求。

2.3 频率的确定

低压低频牵引网交流电流频率主要由机车调速系统特性、继电保护故障切除时限和牵引网阻抗等决定的。为了保证机车正常运行和降低牵引网感抗,将牵引网供电频率确定在1/10~1/3工频之间,且满足:牵引网故障切除时限=继电保护动作时间+半个周波。采用低频供电,相比于工频电制,牵引网感抗可降低数倍,能有效减少网络损耗和提高电压水平。2.4 性能分析

低压低频交流供电系统主要是适用于城市轨道交通领域。与现有牵引供电技术相比,具有以下几个方面的效益:

(1)利用变频器的三相变流技术,不在公共电网产生不对称负序电流和谐波等污染。

(2)利用变频器对公共电网和牵引侧的隔离作用可以把各个牵引变电所的牵引网联通,实施贯通供电,不存在电分相的问题。

(3)克服了直流电制存在杂散电流及其对沿线的金属设施产生电化学腐蚀、故障时直流电弧不易切断等固有技术问题,避免杂散电流治理费用和直流断路器的高额投入。

(4)正常工作时,采用低频可大大降低牵引网的电抗,从而减小电压损失;故障情况下,牵引网的电抗可抑制短路电流及其对供电设备的冲击。

(5)采用3000V~4000V左右的等级可减小工作电流,降低牵引网电压损失,增大了供电距离,减少牵引变电所的数量和建造成本。

低压低频交流牵引供电系统继承了交、直流两种电制的优点,同时规避了它们各自的不足之处。

3发展低压低频交流牵引供电系统的有利条件

在技术层面,如今电力电子技术不断革新,尤其是高压大功率变频器和交流传动技术水平的飞速发展为低压低频交流牵引供电系统的实施提供了技术支持[13]。目前,6000V大功率变频器技术成熟,设备可靠性较高,可实现大规模应用。1979年,德国开发了世界第一台大功率交流传动电力机车。交流电机具有体积小、质量轻、功率大、制造和维护成本低、牵引性能优异等优势。因此交流传动在欧洲等发达国家迅速推广,目前在全世界已得到广泛应用。在以变流器为主电路的交流传动技术的今天,采用低频交流供电也符合社会发展的趋势[14]。

在政策层面,我国不断推进城市轨道交通建设进程,在线路建设和机电设备国产化方面投入大量资金。我国自主研发的DJ2型“奥星”、DJF1型 “中原之星”、DJJ2型“中华之星”、“天梭”电力机车、国产化地铁列车等都采用交流传动技术[14]。北京利德华福公司开发的7500kW/10kV高压变频器已在济南钢铁投入运行。由此可见,若低压低频交流牵引供电系统得以实施,机车与机电设备都将可基本实现国产化。此外,该系统符合国家打造“绿色交通”的理念,适应社会的发展潮流。

低压低频交流牵引供电系统具有良好的适应性,具体体现在两个方面:该系统适用于地铁、轻轨和有轨电车等城市轨道交通供电,既可采用一线一地式又可采用双线式;可对既有线进行相应改造,也适用于新线建设。

随着设备的国产化和规模化生产,低压低频交流牵引供电系统的设备成本必将大大降低,同时还省去了昂贵的直流断路器,以及杂散电流防护等一系列设备,使得该系统具有较好的经济性。低压低频交流牵引供电技术较好地解决了现有牵引供电系统存在的技术难题,同时又能有效提高运行效率,降低运营成本,是一种理想的城市轨道交通牵引供电系统[15-17]。美中不足的是存在工作电流较大(相对于电力电子设备而言)的问题,在变流技术和制造技术进一步发展以后,可采用4000V甚至更高的电压等级,可一定程度上减小工作电流同时减少牵引变电所的数量。

4实施低压低频交流牵引供电系统面临的关键问题

低压低频交流牵引供电系统具有明显的技术优势,但是要实施该系统仍将面临以下三个关键问题:

(1)缺乏工程实施经验和相关规范。

(2)要实施贯通供电,需要解决长距离分布式变频器同步控制的难题。

(3)采用低频交流供电,机车变频调速系统需要做相应调整,改善调速系统在低频状态下的调速特性和动态品质指标,以保障机车的低频运行性能。

5结论

低压低频交流牵引供电系统这一构想全面解决了现有牵引供电系统存在的难题。本文从技术条件、性能指标、经济性等方面进行论证,得出了以下结论:

(1)该系统作为理想的城市轨道交通牵引供电系统,具有一定的研究意义。

(2)以目前的技术水平,该系统具有一定的可实现性,同时具有较高的现实意义。

参考文献:

[1] 张庆贺,朱合华,庄荣,等.地铁与轻轨[M].北京: 人民交通出版社, 2007.

[2] 王凯,陈梦成,谢力,等.杂散电流环境下钢筋混凝土梁弯曲疲劳损伤演变规律研究[J].铁道学报,2012,34(11):88-93.

[3] 牟龙华,史万周,张明锐.排流网情况下地铁迷流分布规律的研究[J].铁道学报, 2007,29(3):45-49.

[4] 杨 俭,李发扬,宋瑞刚,等.城市轨道交通车辆制动能量回收技术现状及研究进展[J].2011,33(2):26-33.

[5] 孔玮,崔运海,秦立军,等.直流牵引系统馈线微机保护装置[J].电力系统自动化,2005,29(1):92-96.

[6] 曹建猷.电气化铁道供电系统[M].北京:中国铁道出版社,1983.

[7] 李群湛,贺建闽.牵引供电系统分析[M].成都:西南交通大学出版社,2007.

[8] 李群湛.关于电气化铁道的负序影响与限制问题的研究[J].铁道学报, 1994, 16(4):21-27.

[9] 姚金雄,张涛,林榕,等.牵引供电系统负序电流和谐波对电力系统的影响和补偿措施[J].电网技术,2008,32(9):61-64.

[10] 张雪原,吴广宁,边姗姗,等.一种新型牵引供电网构想[J].铁道学报, 2007, 29(3):100-106.

[11] 王靖满,黄书明.城市轨道交通供电系统技术[M].上海:上海科学普及出版社,2011.

[12] 于萧寒,陈小川,方鸿波,等. 高压直流牵引供电系统电压等级的研究[J].电气化铁道,2009,4:20-23.

[13] 丁荣军,黄济荣.大功率变流技术与应用 (一)[J] . 变流技术与电力牵引, 2007, (5) : 9-15.

[14] 冯江华.电力电子技术与铁路机车牵引动力的发展[J]. 变流技术与电力牵引, 2006, 2:63-66.

[15] 李群湛.我国高速铁路牵引供电发展的若干关键技术问题[J].铁道学报,2010,32(4):119-124.

[16] 肖志强,林栩.牵引供电系统评价的初探[J]. 铁道学报,1992,14: 108-114.

[17] 陈民武,李群湛,智慧,等.牵引供电系统设计方案的综合评判[J].高电压技术,2010,36(2):525-530.