首页 > 范文大全 > 正文

粘性泥石流掺气减阻作用初探

开篇:润墨网以专业的文秘视角,为您筛选了一篇粘性泥石流掺气减阻作用初探范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:根据野外泥石流观测资料,分析了泥石流掺气与降粘减阻现象,建立了泥石流掺气量与流速的经验公式,并根据泥浆掺气降粘减阻的试验,揭示了泥石流掺气降粘减阻机理,提出了泥石流屈服应力与气体含量及固体浓度的经验公式。本文对解释泥石流减阻,预估泥石流流变特性有重要意义。

关键词:泥石流 掺气 减阻

1 前言

流体减阻问题自从Toms[1],Kramer[2]先后发现高分子稀溶液或弹性材料护面都能实现粘性减阻以来,已经近半个世纪了,由于工业生产中到处都存在粘性流体,而减阻技术又直接为节约能源、提高效率服务,因而倍受重视。近年来减阻研究取得了长足发展,在国际上已召开多次有关‘减阻’学术会议,减阻已发展成一门专门独立学科。除航空、航海外,管道输送中开展了大量减阻研究,以及在石油管道中除加热降粘减阻外,还开展了磁减阻、水环减阻[3]等,而高浓度高粘度固液两相流体减阻,近年来也进行了一定的实验研究。例如在煤的液化技术中,在水煤浆中加入有机添加剂减阻或掺气减阻[4];在封闭式采矿中对高浓度全尾矿砂边壁加水减阻[5]等等。但对于含有粗颗粒,甚至块石的组成更复杂的泥石流,这种自然形成的固液两相流减阻现象研究的较少。

泥石流作为一种高浓度的固、液混合的流变体,由于它暴发突然、来势凶猛、破坏力强,严重地影响着山区的建设和经济发展。为了更好地解决泥石流灾害防治实践中提出的问题,近半个世纪,对泥石流流变机理进行了大量实验研究。对泥石流流变特性有了进一步认识。实验发现粘性泥石流龙头高速流动时可掺入一定量的气体,掺气后作为固、液、气混合流变体,来探讨其中的气体对流变特性的影响,还很少进行研究。本文主要介绍粘性泥石流掺气减阻现场观测的结果及减阻机理。

2 粘性泥石流的流变特性及减阻现象

高浓度粘性泥石流由于受介质和粗颗粒的碰撞及粘性摩擦力的控制和制约,固体物质体积浓度大,致使它的流变特征、水力结构特征要比高含沙水流复杂得多。根据蒋家沟泥石流的观测试验资料可知,见表1。粘性泥石流在浓度基本一样时,它们的平均屈服应力却有很大的差异,例如高粘性泥石流流体的屈服应力是亚粘性泥石流流体的屈服应力的7.2倍。根据屈服应力定性的把泥石流分为高粘性、粘性和亚粘性三类,其分类依据是以有效屈服率(τBt/τB0),即泥石流体的屈服应力值(τBt)与其浆体屈服应力值(τB0)之比来进行分类的。高粘性泥石流屈服应力值是其浆体屈服应力值的3倍左右(=3.09),而亚粘性泥石流体的屈服应力为对应浆体的0.77倍(<1)。亚粘性泥石流浆体介质的屈服应力却小于高粘性泥石流浆体介质达18.94Pa,研究其原因,其中一个相当重要的因素是亚粘性泥石流中含有一定量的气体。而气体对泥石流和其对应浆体的屈服应力τB都有一定的影响,产生降粘、减阻作用。据观测,气体含量与泥石流运动速度有关。

表3观测数据及点绘的图1显示,泥石流气体含量与泥石流的流速成正比。亚粘性泥石流体中泥石流体的屈服应力之所以小于对应浆体的屈服应力,是因为亚粘性泥石流体中颗粒之间的有效孔隙较大,亚粘性泥石流体的结构紧密率(CVt/CVw)为1.63,小于粘性和高粘性泥石流体的结构紧密率(1.85~2.44)。或者还可采用另一种参数来反映,亚粘性泥石流的自由孔隙率(Fr)为0.143,大于粘性和高粘性泥石流的自由孔隙率(0.135,0.086)。上述CVt、CVw、VM分别代表泥石流体的固体体积浓度、流体体积浓度。

4 泥石流掺气减阻机理初探

4.1 泥浆宾汉体掺气减阻

从以上的叙述看出泥石流掺气减阻现象,其减阻规律,减阻的机理可借鉴其它方面的研究成果。例如水煤浆掺气降粘减阻试验发现,水煤浆在受剪切时,微小气泡象滚轴一样流动变形,大大地降低了水煤浆抗剪切能力,在同一水煤浆中,在一定范围内气泡含量越多降粘越显著,在气体含量一样时气泡越细微,分布越均匀降粘效果越显著,对于不同水煤浆,粘度越高的降粘减阻越明显[4]。对于该问题邹履泰[8]曾利用莱因河泥浆进行实验,泥浆为宾汉体,掺入空气作流变试验时发现,在一定范围内随着掺气量的增大,τB与η呈指数减小,对于不同固体体积浓度其减小的趋势不同。1995年对于该问题进行了试验研究。试验用的泥浆呈宾汉体,先作不加气的试验,进而再加不同气量进行试验,共进行了45个测次,每次测试用3种浓度每一种浓度用5种不同加气量,分析选用不加气泥浆,含气量较小范围泥浆的试验资料列于表4[9]。由表4看出,在浓度CV相同时,不加气时流变参数τB0、η呈最大值。随着掺气量的增加,流变参数τB0、η减小。根据表4的试验资料,进行相关分析,则τB0与CVg的相关关系分别为

表4 不同泥浆加气降粘试验成果

Experimental result for different increase air concentration to viscosity reduction