首页 > 范文大全 > 正文

高分辨率星载滑动聚束SAR成像方法研究

开篇:润墨网以专业的文秘视角,为您筛选了一篇高分辨率星载滑动聚束SAR成像方法研究范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘 要 滑动聚束SAR可以在高分辨率成像和大面积成像中做出很好的权衡,为将其应用于星载SAR成像中,本文对星载滑动聚束sar成像中的关键技术进行了研究,研究了星载成像几何参数、卫星等效速度的获取方法以及解模糊方法。为解决子图像的拼接问题,本文选择了BP成像算法,对其成像机理进行了深入研究,对BP算法应用于星载滑动聚束SAR模式时的 流程进行了详细设计,按照该流程可避免图像拼接过程而直接连续出图,最后用仿真实验对该方法进行了验证。

【关键词】滑动聚束 合成孔径雷达 解模糊 BP算法

滑动聚束式SAR是一种新颖的SAR工作模式。它通过控制天线辐照区在地面移动的速度来控制方位向的分辨率,其成像的面积要比聚束SAR大,并且其分辨率可以高于相同尺寸天线的条带SAR的分辨率,它可以在高分辨率和大面积成像中做出很好的权衡。目前国外先进的SAR系统,如PAMIR、TerraSAR-X等都采用了这种成像模式。聚束和条带模式可以看成是滑动聚束模式的特例;当辐照区在地面上的移动速度为零时,即为聚束成像模式;当辐照区在地面移动的速度为飞机的速度时,即为条带成像模式。当辐照区的移动速度在零与飞机速度之间时,用同样尺寸的天线,由于方位向相干累积的时间要比条带SAR 长,因此其方位向的分辨率大于条带SAR 的分辨率。由于在扫描过程中辐照区移动的速度不为零,所以其方位向成像尺寸要比聚束模式下方位向成像尺寸要大。

1 滑动聚束SAR工作模式

滑动聚束工作模式是对条带工作模式和聚束工作模式的折中,该模式下雷达系统实时控制天线波束指向来减缓天线波束在地面上的移动速度,增加雷达系统对地面目标的观测时间,进而获得较传统条带工作模式更高的方位向空间分辨率,与此同时,由于天线波束在地面仍然存在一定的移动速度,能够获得较聚束工作模式更大的方位向测绘带宽度。其工作方式如图1所示。

以卫星飞行的慢时间tm为横轴,卫星以速度v沿该轴匀速运动。设卫星与点目标P的垂直距离为RB。而在飞行过程中,天线波束中心始终指向地面上的某一点(图中黑点所示,聚束模式下始终指向地面的某一假想点,滑动聚束模式下始终指向地面下的某一假想点)。tm轴的原点O以卫星位于正对该假想点位置的时刻为准,即卫星飞行经过慢时间tm=0时刻时距离该假想点的距离最短。根据斜视角,即可获得每个脉冲时刻卫星的方位坐标。

当满足下面条件时,地面上的点目标可以被完整地照射到:

为雷达中心频率对应的波长,c为光速,tm为方位向慢时间,为距离向快时间,γ为发射线性调频信号的调频率。落在这两个窗函数中的点目标才能被该脉冲波束所照射覆盖到。

2 星载SAR主要参数获取的问题

图2为天基雷达的对地观测几何图形,设地球半径为Re,卫星轨道距离地面的高度为h,如果中心视角φ0已知的情况下,我们可以按以下公式计算出其它主要参数:

对应的中心入射角

卫星的轨道近似为一个偏心率较低的椭圆,通常情况下,可以将轨道看做圆形来处理。如果轨道为圆周,则轨道周期P的平方与轨道的半径Rs的三次方之间有如下的关系:

在大多数情况下,只要适当选择传感器速度,就可以得到一种简单的几何关系,该模型下的距离等式为双曲线,这样就使不同域中的信号特性可以方便地表达,并且也能简单导出数据处理等式,如图4。

假设飞行路径为局部直线,地球为局部平坦且不转动,则传感器到目标点的距离由如下双曲等式给出:

在此假设情况下,双曲等式同样适用于星载情况,只不过Vr不是物理速度,而是为了使实际距离等式符合双曲模型等式而选定的虚拟速度。星载与机载的重要区别在于星载中的Vr是沿距离变化的。同过比较上两图中的两种几何关系,可以看出,,所以等效速度,并且,根据局部圆轨道假设,为卫星轨道速度Vs,而为波束覆盖区的速度,即地面速度Vg。Vg的值假设了地球在点C附近为局部球形,因此Vg与Vs平行。

3 解模糊方法

在星载SAR成像中,PRF的选取通常只是天线照射范围所产生的多普勒带宽的1.1或1.2倍。SAR中所需要的多普勒带宽与分辨率的关系为:

在星载滑动聚束SAR中,由于PRF的选取受诸多条件的限制,PRF选取通常之比瞬时的多普勒带宽略大,而比整个信号多普勒带宽要小的多,也就是在回波中会存在多普勒模糊的现象,因此需要研究滑动聚束SAR的解模糊问题。

一般会采用dechirp操作解决多普勒混迭,而滑动聚束SAR和聚束SAR的最大区别是滑动聚束SAR的成像区域要比一个天线辐照区域要大,因此我们在dechirp时如果以场景中心点做dechirp操作时,此时场景所引起的多普勒带宽仍然大于脉冲重复频率,因此需要将方位向数据分成若干个子孔径,各个子孔径之间可以进行一定的重叠。在子孔径内采用dechirp操作解决多普勒混迭的算法。算法流程如图5所示。

经过如上的操作后,可以完全解决多普勒模糊的问题。经过解模糊后,在回波数据于中没有多普勒模糊现象,此时可以用CS,波数域算法,极坐标算法等对解模糊后的数据进行成像

4 BP算法介绍

反投影(Backprojection,简称BP)算法源于计算机辅助层析(Computer-aided Tomography,简称CAT)成像技术。简单说来, BP算法是一种逐点成像的算法,是一个点对点的图像重建过程。在实际中,雷达发射的是球面波,那么散射点回波信号在距离压缩后的徙动轨迹是弯曲的,且不同距离散射点轨迹的弯曲程度不一样,因而不同散射点需要进行不同的聚焦处理。而BP逐点成像的特性恰好能满足这个要求,它可以通过计算每个像素到每个天线位置的距离,沿每个散射点的轨迹对其进行时域相干叠加实现高分辨率成像。也就是说,在每个脉冲对应的天线位置,都逐点计算各个像素到此天线位置的距离,然后通过对距离压缩后回波数据进行插值的方法得出这个脉冲对各个像素所作出的不同贡献。图6为BP算法根据目标徙动轨迹实现“点对点”图像重建的示意图。

正因为BP算法逐点成像的特性,对不同频带不同模式,包括大斜视情况,BP算法都可以根据分辨率要求和实际情况人为地设定地面像素网格点,不论多么巨大的距离徙动BP算法都可以对每一个像素点沿着其各自的徙动曲线对该点目标进行其能量的积累。

地面成像处理流程如图7所示,步骤如下:

Step1. 构造地面像素网格点

根据分辨率要求,在地面成像区域构造不同像素间隔的像素网格点,记录每个像素点的方位、距离坐标,并保证方位、距离两维像素分辨单元大小基本匹配。

Step2.反投影

逐脉冲读取并处理, 主要有3个步骤,分别为:

(1)距离脉冲压缩

距离脉压过程参考自检处理。距离脉压结束后无须作多点叠加,保留全部过采样点。

(2)判断波束覆盖地面像素点

根据每个像素点的方位、距离坐标和该脉冲对应的天线位置和方位波束宽度,可判断出像素点中哪些处于此脉冲波束覆盖范围内,对其进行记录。

3>.逐像素点反投影

逐点计算波束覆盖像素中每个像素与该脉冲对应天线位置的瞬时距离,然后根据此距离对距离脉压数据进行插值,得出这个脉冲对所覆盖不同像素点所作出的不同能量贡献,并将其放置于对应像素点上。对同一像素点,将不同脉冲对其贡献的能量相干叠加。

对一个脉冲处理结束后即可抛弃此脉冲,继续读取下一个脉冲并处理。图像的方位分辨率随脉冲数增加而提高。

在BP这种时域成像算法中,地面像素点的设置都是根据分辨率要求和实际情况人为地设定的,一般可以按照略小于分辨率的间隔,按照希望得到的图像几何方向,等间距地设置地面网格。这样的特性就使得BP存在以下几个优势:

(1)由于像素设置的任意性,即使是大斜视情况,所获得的图像在视觉上可是我们所希望的任意方向,不会存在几何失真。

(2)对一个脉冲,根据雷达方位位置与像素点的地理坐标,就可以逐一判别某个像素点是否被其照射到。对所照射到的像素点,进行反投影的操作;对未照射到的像素点,不进行操作。最终就可自然获得接续的SAR图像,无需考虑拼接。

5 仿真实验

本模式下的仿真参数为:采用滑动聚束(spotlight)模式对方位向400km(A)*50km(R)的场景进行0.1m成像分辨率处理,轨道高度1100km,15°波位,X波段,滑动聚束成像几何常数A=1/8,天线方位向直径为1.6m,距离向直径0.6m。仿真中,地球半径取6371km;为分析对场景中不同位置点目标的聚焦能力,在其对应的地面有效成像场景范围内均匀设置了17*3个点目标,分布位置如下图所示,点目标间隔为25km。由于不是实测数据,无法得到卫星的姿态数据,因而认为照射场景相对全合成孔径来说为正侧视照射,只依据轨道高度和视角来计算初始参数,如图8。

数据采集三维几何模型以如下,根据分辨率要求,像素间隔设为0.08m,如图9。

仿真结果如图10所示,可见图像清晰,无拼接痕迹:

边缘A点的三维响应及其等高线图及剖面图如图11。

由等高线图看出其聚集良好。由于对A点成像的阶段属于前斜视成像,该点目标等高线图呈斜十字型。下面再给出点O的详细分析,如图12和表1。

由于对O点成像的阶段属于正侧视成像,因而剖面图及参数都较为理想。

6 小结

本文对星载滑动聚束SAR成像中的关键技术进行了研究,研究了成像几何参数、卫星等效速度的获取方法以及解模糊方法。为解决子图像的拼接问题,本文选择了BP成像算法,对其成像机理进行了深入研究,对BP算法应用于星载滑动聚束SAR模式时的流程设计进行了详细分析,按照该流程可快速实现滑动聚束SAR中的图像拼接,并用仿真实验对该方法进行了验证。

参考文献

[1]张澄波.综合孔径雷达原理、系统分析及应用[M].北京:科学出版社,1989.

[2]禹卫东.“合成孔径雷达信号处理研究”[D].博士论文.南京航空航天大学.

[3]Mittermayer,J.; Lord,R.;Borner,E. Sliding spotlight SAR processing for Terra SAR-X using a new formulation of the extended chirp scaling algorithm[C],IGARSS 2003 Proceedings,21-25 July 2003,1462-1464.

[4]唐禹,王岩飞,张冰尘.滑动聚束SAR成像模式研究[J].电子与信息学报,2007,29(l):26-29.

Tang Yu,Wang Yanfei,Zhang Bingchen.A study of sliding spotlight SAR imaging mode[J].Journal of Electronics& Information Technolog,2007,29(l):26-29.

[5]蒋为,李敏慧.星载SAR滑动聚束模式研究[J].现代雷达,2011 .

[6]唐禹,王岩飞,张冰尘.滑动聚束SAR成像模式研究[J].电子与信息学报,2007 .

[7]刘寒艳,宋红军,程增菊.条带模式、聚束模式和滑动聚束模式的比较[J].中国科学院研究生院学报,2011.

[8]D. C. Munson Jr, J. D. O'Brien,W. K. Jenkins, "A tomographic formulation of spotlight-mode synthetic aperture radar," Proceedings of the IEEE, vol.71, no.8, pp.917-925, Aug.1983.

[9]M.D.Desai,W.K.Jenkins,"Convolution backprojection image reconstruction for spotlight modesynthetic aperture radar,"IEEE Transactions on Image Processing,vol.1,no.4,pp.505-517,Oct.1992.

作者简介

聂鑫(1983-),女,博士毕业于南京航空航天大学,目前担任中国电子科技集团第十四研究所高级工程师.研究方向为合成孔径雷达信号处理成像,曾发表SCI论文3篇,EI论文3篇,核心期刊论文2篇。“一种基于变尺度原理的合成孔径雷达极坐标格式成像算法”国家发明专利一项,已授权。

作者简介

聂鑫(1983-),女,现为南京电子技术研究所高级工程师。主要研究方向为合成孔径雷达信号处理。

雷万明(1964-),男,现为南京电子技术研究所高级工程师。主要研究方向为合成孔径雷达信号处理。

沈石坚(1983-),男,现为南京电子技术研究所高级工程师。主要研究方向为火控雷达信号处理。

作者单位

南京电子技术研究所 江苏省南京市 210039