首页 > 范文大全 > 正文

简述混凝土结构腐蚀产生的原因及防治方法

开篇:润墨网以专业的文秘视角,为您筛选了一篇简述混凝土结构腐蚀产生的原因及防治方法范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:预防混凝土结构腐蚀和对混凝土腐蚀的防护,是确保主体结构能够达到规定的设计使用年限,满足建筑物的合理使用年限的要求。随着人们对建筑质量的要求越高,建筑物的使用寿命是土建工程得以量化的集中表现,保证建筑物混凝土结构具有经济合理的使用寿命,节约资源和可持续发展。因此混凝土结构的腐蚀现象也越来越被重视。

关键词:混凝土结构;腐蚀;预防为主;防护结合

中图分类号:U213.1 文献标识码:A

随着人们对建筑质量的要求越高,建筑物的使用寿命是土建工程得以量化的集中表现,保证建筑物混凝土结构具有经济合理的使用寿命,节约资源和可持续发展。因此混凝土结构的腐蚀现象也越来越被重视,混凝土结构腐蚀的范围很广,介质种类繁多,腐蚀形式多种多样。在建筑工程中,应采取“预防为主,防护结合”。

1 混凝土结构腐蚀产生的原因

混凝土结构的劣化机理,环境作用决定混凝土结构的使用寿命,也是引起混凝土结构腐蚀的主要原因。在一般环境下,混凝土结构的腐蚀主要是碳化引起的钢筋锈蚀。混凝土呈高度碱性,钢筋在高度碱性环境中会在表面生成一层致密的钝化膜,使钢筋具有良好的稳定性。当空气中的二氧化碳扩散到混凝土内部,会通过化学反应降低混凝土的碱度,使钢筋表面失去稳定性并在氧气与水分的作用下发生锈蚀。饱水的混凝土在反复冻融作用下会造成内部损伤,发生开裂甚至剥落,导致骨料。环境中的氯化物以水溶氯离子的形式通过扩散、渗透、和吸附等途径从混凝土构件表面向内部迁移,可引起混凝土内钢筋的严重锈蚀,氯离子引起的钢筋锈蚀难以控制、后果严重。

钢筋混凝土结构材料是混凝土与钢筋的复合体,它的腐蚀形态可分为两种:一是由混凝土的耐久性不足,其本身被破坏,同时也由于钢筋的、腐蚀而导致整个结构的破坏;二是混凝土本身并未腐蚀,但由于外部介质的作用,导致混凝土本身化学性质的改变或引入了能激发钢筋腐蚀的离子,从而使钢筋表面的钝化作用丧失,引起钢筋的锈蚀。从化学成分来看,钢筋的锈蚀物一般为Fe(OH)3、Fe(OH)2、Fe3O4・H2O、Fe2O3等,其体积比原金属体积增大2~4倍。由于铁锈膨胀,对混凝土保护层产生巨大的辐射压力,其数值可达30MPa(大于混凝土的抗拉极限强度)使混凝土保护层沿着锈蚀的钢筋形成裂缝(俗称顺筋裂缝)。这些裂缝进一步成为腐蚀性介质渗入钢筋的通道,加速了钢筋的腐蚀,等到混凝土表面的裂缝开展到一定程度,混凝土保护层则开始剥落,最终使构件丧失承载能力。

影响混凝土中性化(包括碳化)速度的因素很多,但主要的因素是混凝土的密实度,即抗渗性能。混凝土愈密实,抗渗性能愈高,则外界的气体只能作用于混凝土表面,向内部渗透比较困难。影响混凝土密实度的主要因素是混凝土的水灰比和单位水泥用量。预应力混凝土结构的腐蚀除了具有普通混凝土结构的腐蚀类型外,由于采用高强度钢筋和钢筋在高应力条件下工作,所以可能发生应力腐蚀和钢材的氢脆。应力腐蚀是钢筋在拉应力和腐蚀性介质共同作用下形成的脆性断裂。这种破坏与单纯的机械应力破坏不同,它可以在较低的拉应力作用下破坏,这种破坏又与单纯的电化学腐蚀破坏不同,它可以在腐蚀性介质很弱的情况下而破坏。

腐蚀性介质与钢筋作用,在钢筋表面形成一个大小不等弥散分布的腐蚀坑后,每个腐蚀坑相当于一个缺口,钢筋在拉应力的作用下,形成应力的不均匀分布和应力集中。在缺口的边缘,当钢筋平均应力不高时,其集中的应力即可达到断裂应力的水平,而引起钢筋的断裂。预应力钢筋的腐蚀是拉应力与腐蚀性介质共同作用的结果。腐蚀因素对钢筋断裂的最初形成起主要作用,而拉应力则促进了腐蚀的发展。

氢脆是预应力钢筋在酸性与微碱性的介质中发生脆性断裂的另一中类型。氢脆与应力腐蚀的机理完全不同。应力腐蚀发生在钢筋的阳极,而氢脆发生在钢筋的阴极区域。氢脆是由于钢筋吸收了原子氢,而使其变脆,所以称为氢脆。钢筋在腐蚀过程中,表面可能有少量氢气产生,在通常情况下,生成的原子氢会迅速结成分子氢,在常温下是无害的,但当这一过程受到阻碍时,氢原子就会向钢筋内部扩散而被吸收到金属内部的晶格中去,如果钢筋内部有缺陷存在,氢原子很可能重新结合成为氢分子。氢分子的生成产生很大的压力,出现“鼓泡”现象,使钢筋变脆。产生氢脆的钢筋在受到超过临界值的拉力作用时,便会发生断裂,硫化氢是能引起预应力钢筋氢脆的介质之一。

2 混凝土结构腐蚀的防治方法

对混凝土结构腐蚀预防应针对其不同的结构组成制定不同的办法。

原材料的选择:水泥是水泥砂浆和混凝土的胶结材料,水泥类材料的强度和工程性能,是通过水泥砂浆的凝结、硬化而形成。正确选用水泥品种,对保证工程的耐久性与节约投资有重要意义。

粗、细集料:发生碱-集料反应的必要条件是碱、活性集料和水。粗、细集料的耐蚀性和表面性能对混凝土的耐蚀性能具有很大影响。集料与水泥石接触的界面状态对混凝土的耐蚀性有一定影响。

混凝土中所采用粗细集料,应保证致密,同时控制材料的吸水率以及其它杂质的含量,确保材质状况。混凝土拌合及养护用水,应考虑其对混凝土强度的影响。水灰比的大小很大程度影响混凝土强度值的大小。拌合水应检查其杂质情况,防止影响砂浆及混凝土生成时杂质影响其耐久性。混凝土外加剂是在拌制混凝土过程中掺入,用以改善混凝土性质的物质。混凝土外加剂的范围很广,品种很多,我国外加剂的品种目前已超过百种,其中包括减水剂、早强剂、加气剂、膨胀剂、速凝剂、缓凝剂、消泡剂、阻锈剂、密实剂、抗冻剂等。

在建筑防腐工程中,外加剂的使用主要是为了提高混凝土密实性或对钢筋的阻锈能力,从而提高混凝土结构的耐久性。实践证明,采用加入外加剂的方法,可以在一定范围内达到提高混凝土结构的耐腐蚀能力,是一种经济而有效的技术措施。但由于外加剂的化学组成,来自外加剂中的氯盐可能使混凝土结构中的钢筋脱钝,给结构物带来隐患。在进行外加剂选择时需对其中氯盐的含量进行检测,并做相关实验。

防腐混凝土的配合比设计:为提高混凝土的密实性和抗中性化能力,混凝土的强度等级宜大于或等于C25。受氯离子腐蚀或其它大气腐蚀时,钢筋混凝土构件中可掺入钢筋阻绣剂。对于预应力混凝土结构,其混凝土强度等级不小于C35,后张法预应力混凝土构件应整体制作,不得采用块体拼装的构件。

混凝土配合比的设计,应按以下两种情况进行:一是按设计要求的强度(即按正常要求的强度)进行配合比设计;二是按密实度的要求(即按最大水灰比和最小水泥用量的要求)进行配合比设计,但强度等级往往大于前者。腐蚀环境中的混凝土配合比设计,必须取用上述两种情况中强度等级的较高者。

综上所述,预防混凝土结构的腐蚀和对混凝土腐蚀的防护是确保主体结构能够达到规定的设计使用年限,满足建筑物的合理使用年限的要求,保证建筑物混凝土结构具有经济合理的使用寿命,节约资源,满足社会的需要。