首页 > 范文大全 > 正文

对成功应用工程力学知识优化施工技术方案的总结

开篇:润墨网以专业的文秘视角,为您筛选了一篇对成功应用工程力学知识优化施工技术方案的总结范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

【摘 要】工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的基础学科。工程力学的定理、定律和结论是解决工程实际问题的重要基础,同时为进一步优化施工技术方案提供了科学的理论依据。本文就成功应用工程力学相关知识优化水电站工程施工技术方案的过程予以分析总结,旨在进一步提高建筑施工行业优化技术方案的水平,并在有效提高经济效益的同时,保证工程施工技术方案的科学性、可靠性、合理性与可操作性,为今后类似工程提供参考、借鉴。

【关键词】应用 工程力学 优化 技术方案 总结

1工程概况

拉西瓦水电站泄洪底孔除承担提前发电期汛期施工导流,同时承担降低库水位及库水位降至2339m左右向下游供水的任务;临时底孔主要为提前发电期承担汛期施工导流,后期进行封堵。底孔、临时底孔布置相同,均由进口段、有压段、弧形工作门墩段(包括鼻坎段)组成。进口底坎高程2320.0m,进口设平板事故检修门,孔口尺寸4.0m×9.0m;工作弧门底坎高程2320.0m,孔口尺寸4.0m×6.0m。

2施工方案说明

2.1原施工方案说明

底孔、临时底孔除孔口部位有钢衬外,孔身均无钢衬。其流道长,深度大,且顶板呈渐变形态。原顶板投标方案采用规格为φ273×12mm的钢管柱支撑(间排距1m×3m),支柱间布设∠752×7的剪刀撑;管柱顶部铺设Ι28找平梁和Ι25的水平梁形成钢平台,其上安装散装钢模板。原支撑方案见图1。

2.2优化施工方案说明

底孔、临时底孔流道总长73m,流道两边墙净跨距4m,两边墙及顶板混凝土均设计有受力钢筋,顶板混凝土中沿跨距方向受力钢筋为三层,底部两层为Φ32,顶部为Φ28,其竖向间距分别为20cm、30cm,平行间距均为20cm。

为加快孔口坝段的施工进度,利用工程力学相关知识对底孔、临时底孔流道顶板的原施工方案进行了较为科学、细致的优化,将流道底部改为钢筋桁架支撑及吊模。利用流道顶板混凝土中的设计受力钢筋与新增钢筋形成吊模的桁架支撑系统。其支撑结构见图2。

3优化方案的科学性验证

3.1荷载及结构校核计算

3.1.1荷载计算

以双榀桁架覆盖范围为基本计算单元:下弦杆跨度4.35m、顺流道长0.6m、混凝土最大浇筑高度2m(流道顶板台阶分层高度控制在1m~2m间,见图3)。

(1)现浇混凝土重量:混凝土以常规2500kg/m3、乘以1.25的结构安全保证系数进行验算,以均布荷载计为:

q1=0.6m×2m×2500kg/m3×10N/kg×1.25=37.5kN/ m

(2)支撑桁架自重:考虑到设计架立筋与水平桁架上、下弦杆的连接强度,此处以水平设计钢筋计入桁架自重进行校核,其重量包括桁架上、下弦杆、腹杆、连接筋及设计钢筋,其单元校核总重为649 kg,以均布荷载计为:

(3)吊模材料自重由螺帽、螺杆、钢垫板、胶合板、散装钢模及钢围檩组成,其单元校核总重为368 kg,以均布荷载计为:

(4)施工人员及设备单元校核重量以3人×75kg/人+200kg=425kg计,以均布荷载计为:

(5)混凝土振捣动荷载以均布荷载计为:

q5=5kN/m2×0.6m=3kN/m

(6)混凝土吊罐卸料动荷载计算。

①混凝土吊罐卸料动荷载分析。浇筑施工时,限定混凝土吊罐卸料最大高度不超过3m,分析混凝土吊罐卸料的实际过程,忽略混凝土间、混凝土与吊罐卸料口间的粘滞力,假设卸料只受重力作用;与此同时,混凝土料的实际运动近似流体运动,相对固体自由下落的冲击力要小的多,加之混凝土下落后,与受料面接触后会产生锥形堆积,增大受力面积,随着混凝土料下落量的增多,受料面单位面积承受的动荷载逐渐减小。

考虑到保证吊模的结构安全可靠性,现将卸料流体均匀下落运动转化为以卸料口为正投影面面积、高1.5m的圆柱形混凝土柱自由落体运动,下落高度为3m,结构转化见图4。

图4 混凝土吊罐卸料动力计算转化图(单位:mm)

②动荷载计算。求混凝土柱对吊模模板的冲击力F,因拟定为固体自由落体运动,则由: 、 、 、 得 &

则由求得量及动量定理公式得: 、 、 、 、 、 得

因冲击力F冲击面积为直径0.895m的圆,而吊模单个吊点承载范围为流道长向0.6m、流道跨度0.44m,因此,将求出的冲击力转化为沿流道跨长方向的均布荷载为:

综上所列,单榀桁架下弦杆节点承受集中荷载P为:

则支座反力

3.1.2桁架内力计算

截取A点为首个计算节点,假设N1及N30为拉力,并规定拉力为“+”、压力为“C”,由A点处的平衡方程:

由计算可知N1为压力,N30为拉力。

再截取C点为计算节点,将已经求出的杆件内力按实际方向标明,将未知力依然假设为拉力,则由C点处的平衡方程:

由计算可知N2为拉力,N21为压力。

以节点法依次类推计算得出各杆件的内力值,并标于桁架内力简图,见图5。

3.1.3桁架强度及稳定性校核计算

(1)桁架腹杆计算。

①桁架腹杆中拉杆(如CD)内力最大为Nmax=89.62kN,采用φ28、l=0.83m(腹杆有效计算长度),根据轴心受力杆件刚度计算公式校核如下:

由 、 得

(公式①)

校核其强度:

由 、

得 (公式②)

因腹杆中所有拉杆选用材料相同、计算长度均相等,校核最大拉力所在杆满足强度要求,故可知腹杆其余拉杆均满足强度要求。

②桁架腹杆中压杆(如AC)内力最大为Nmax=88.93kN,采用φ28、l=0.83m,则如下:

根据公式①求得λ=118.6

根据公式②求得σmax=114.5N/mm2

因腹杆中所有压杆选用材料相同、计算长度均相等,校核最大压力所在杆满足强度要求,故可知腹杆中其余压杆均满足强度要求。

根据已经求出腹杆中最大内力压杆的长细比,应确定该腹杆(如AC)为大柔度压杆还是小柔度压杆,之后选用相应的压杆稳定计算公式进行校核。

查表得Ⅰ级钢筋(HPB235)强度设计值fpy=205N/mm2、弹性模量E=2.1×105N/mm2,则压杆柔度(长细比)临界值λp: (公式③)

因此,确定该腹杆为大柔度压杆,应选用“欧拉公式”对其进行稳定性校核,由 、 、 得

因Ncr=90.64kN>Nmax=88.93kN,所以,桁架φ28腹杆压杆最大内力杆满足压杆稳定要求,故其余φ28腹杆均满足压杆稳定要求。

(2)桁架弦杆计算。

①桁架上、下弦杆校核单元均采用Φ32、l=0.44m的Ⅱ级热轧带肋钢筋。因上弦杆均为压杆,所受最大轴向压力为Nmax=129.46kN(如上弦KM杆),则如下:

根据公式①求得λ=55

根据公式②求得

σmax=161.1N/mm2

因校核最大压力所在弦杆满足强度要求,可知上弦杆其余各杆即满足强度要求。

查表得Ⅱ级钢筋(HRB335、Q345)强度设计值fpy=300N/mm2、弹性模量E=2.0×105N/mm2,根据公式③求出压杆柔度(长细比)临界值λp=81.1> λ =55,则确定此压杆为小柔度压杆,应选用轴心受压杆件稳定计算公式对其进行校核,如下:

由λ =55查表得Ⅱ级热轧带肋钢筋(HRB335、Q345号钢)a类截面中心受压直杆的稳定系数为φ=0.855,得:

由所求可知,桁架上弦杆满足稳定性要求。

②因下弦杆均为受拉杆,其中最大拉杆(如JL)内力最大为Nmax=126.82kN,采用Φ32、l=0.44m,则如下:

根据公式①求得λ=55

因此,桁架下弦杆满足强度要求。

(3)吊点螺杆计算。因吊点螺杆为受拉杆,其中最大拉力为2P=38.4kN,采用φ20、l=0.464m,则根据公式①求得λ=92.8

3.1.4焊缝强度校核计算

桁架弦杆与腹杆的连接方式采用搭接双面满焊,搭接长度为20cm,为保证足够的搭接焊缝长度和强度,特将腹杆在弦杆两侧交错焊接,两腹杆拐头与弦杆搭接相交部分(长度为5cm)不施焊,避免焊接损伤弦杆母材,故单拐实际焊缝长度为30cm(15cm×2面),见图6。

图6 桁架弦杆与腹杆焊接简图(单位:mm)

弦杆与腹杆钢筋焊接以直角焊缝计算,得焊角尺寸hf =23mm,则焊角有效计算高度he =0.7hf =16mm;同时,为考虑焊缝的施工缺陷,有效计算长度lw以实际焊缝长度的80%(即240mm)作为计算长度,查表得Q235钢的焊缝强度设计值为160N/mm2,则根据以下公式得:

已求得桁架各杆内力最大值N=129.46kN

吊模支撑系统主要由桁架受力弦杆及腹杆与垂直于桁架平面的刚性材料固接,形成整体空间框架结构,其实际强度及稳定性指标高于单榀平面桁架。因此,经验算可知,主坝底孔、临时底孔流道顶板混凝土采用吊模施工,其优化后的支撑结构承载力满足强度及稳定性要求,优化方案可行。

3.2方案优化前后对比分析

方案优化对比分析详见下表1。

表1方案优化对比分析表

方案名称 钢材用量(t) 制作、拉运及入仓手段 优缺点比较

优化前:门形管柱支撑 124.02 由于流道顶部为两段坡面组合的渐变段,钢管支撑的渐变高度为6m~8.2m,将型材拉运至前方,缆机入仓,在流道底部加工为单榀门形支撑,后由仓面吊配合人工吊装。 因前方交叉作业,制安干扰大,焊接质量势必降低;安装耗时;从底部支撑,渐变段下料制安施工难度大;属于被动支撑,对混凝土拆模强度要求高、耗时;支撑结构较大,拆模困难。

优化后:钢筋桁架支撑 87 钢筋桁架体积小,单榀重209.5kg,均可在后方加工厂制作并拉运至前方,缆机入仓后,五名施工人员即可安装,仓面吊仅起到临时辅助安装作用。 后方加工精度高;更有效地实行“三检一验”制度,确保了桁架的加工出厂质量;前方安装快捷、高效,缩短了工期;桁架支撑主动受力,无需底部支撑,大大降低了施工难度;混凝土强度达到70%,方可拆模;支撑结构简单、轻便,易于拆模。

4结语

吊模工艺在工程施工中的应用日渐成熟,但在水电站大体积混凝土施工中的成功应用为数不多。拉西瓦水电站泄洪底孔、临时底孔流道顶板大体积混凝土施工采用吊模工艺的优化施工技术方案,应用工程力学相关知识为理论基础,经过科学、合理的验算及选材,充分体现出建筑施工单位的实践性。在遵循国家规范及设计成果的前提下,应用科学的理论知识,并结合施工一线的实践经验,不断采用并推广新技术、新工艺、新设备、新材料、新产品,将进一步提高施工单位的整体技术水平。同时,应用工程力学相关知识对施工技术方案进行科学而合理的优化,凸显其在工程建设中不容忽视的重要作用。

参考文献:

[1]孙训方 等著.材料力学.第四版.北京:高等教育出版社,2002.8.

[2]包头钢铁设计研究总院、中国钢结构协会房屋建筑钢结构协会编著.钢结构设计与计算.第2版.北京:机械工业出版社,2006.1.