首页 > 范文大全 > 正文

投加粉末活性炭对膜阻力的影响研究

开篇:润墨网以专业的文秘视角,为您筛选了一篇投加粉末活性炭对膜阻力的影响研究范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:小试和中试研究结果表明:粉末活性炭在膜生物反应器系统中具有改善泥水混合液的性质和 膜表面泥饼层结构的作用,从而减小了膜的过滤阻力,减缓了膜通量的下降。向膜生物反应器内投加粉末活性炭是提高和维持膜通量的有效途径,并且可以降低运行费用。

关键词:膜生物反应器 粉末活性炭 膜通量 膜阻力

Effects of Dosing Powdered Activated Carbon into Membrane Bioreactor (MBR) on Membrane Resistance

Abstract:The laboratory scale and pilot scale tests on MBR showed that dosing PAC could i mprove characteristics of mixed liquor and the structure of cake layer on the su rface of membrane,and therefore filtration resistance was reduced and flux in de cline was retarded.The experimental results showed that dosing PAC was an effect ive way to increase membrane flux and decrease the operating cost of MBR.

Keywords:MBR;PAC;membrane flux;membrane resistance

目前,限制膜生物反应器(Membrane Bioreactor,MBR)广泛应用的主要原因是该系统的运行 费用较高,而膜折旧在运行费用中又占有相当大的比例。降低膜折旧费用的方法有两种,其 一是增加膜的工作寿命;其二是增加膜的工作通量,从而降低所需的膜面积。采取低压操 作、间歇运行、紊流曝气等措施可在一定程度上减缓膜污染和堵塞[1],在上述基础上,笔者又对在MBR系统中投加粉末活性炭(PAC)的效果进行了研究。

1 理论依据

1.1膜比通量

为比较不同膜面积、不同工作压力下膜的透水特性,引入膜比通量(Specific Flux,SF) 的概念。定义SF是基于在较低压力下工作的膜出水量与膜面积和工作水位差之积的比值,用公式表示如下:

SF=Q/(AH)=J/H

(1)

式中 SF——膜比通量,m3/(m2·m·s )

J——膜通量,m3/(m2·s)

Q——膜组件出水量,m3/s

A——膜表面积,m2

H——工作水位差,m

1.2 膜通量的基本方程

日本学者Shimizu Y.等人分析了膜通量下降的因素,提出了膜通量与膜阻力的关系[2 ]:

J=ΔP/(μ·Rt) (2)

式中ΔP——作用于膜两侧的压差,Pa

μ——渗透液的粘度,Pa·s

Rt——膜的总阻力,m-1

膜的总阻力可以表示为:

Rt=Rm+Rp+Rc (3)

式中Rm ——纯膜阻力,m-1

Rp——膜污染阻力,m-1

Rc——滤饼层阻力,m-1

2 试验方法

2.1 小试

小试历时4个月,试验装置如图1所示。

为方便比较,进水水质与运行方式均与不投加PAC的试验基本相同。采用间歇出水的方 式,出水时间与空曝时间之比为7∶3,其他主要控制参数:水温为18~28℃;曝气量为0.2~0.27 m3/h;膜上作用水头为7kPa;PAC投加浓度为2000 mg/L; 平均进水CODCr=250 mg/L(其中BOD5∶N∶P按100∶5∶1计);MLSS=8000 mg/L;SRT=100d。

2.2 中试

在原有的中试装置[3]运转近5个月时取出膜组件,将膜表面的泥饼清洗干净后放回。向反应器中一次性投加2000 mg/LPAC,其他试验参数及运行方式与不投加PAC时基本相同[3]。每周期处理水量为280L/h;HRT为6.25h;气水比为30∶1;平均排泥量为30L/d;MLSS维持在7500mg/L左右(平均含有1700 mg/L的PAC);SRT为30d;温度维持在24~27℃;反应器内混合液pH值维持在7.0左右。

3 小试结果与讨论

3.1 投加PAC对膜比通量的影响

投加与不投加PAC对膜比通量的影响见图2。

由图2可见:

①未投加PAC的MBR中膜比通量的变化可分为两个阶段。投入运行后的前5d属于快速下 降阶段,膜的比通量由6.61×10-6m3/(m2·m· s)降至3.25×10-6m3/(m2·m·s),其日均降低速率为6.72×10-7m3/(m2·m· s)。此后MBR即进入运行的相对稳定阶段,膜比通量的日均下降速率仅为1.54×10-8m3/(m2·m·s)。

②投加PAC的MBR在投入运行后并没有出现快速下降期,膜比通量随运行时间的延长而缓 慢下降,日均下降率为2.69×10-8m3/(m2·m· s)。

③投加PAC后稳定运行阶段的膜比通量较投加PAC前明显增大。在运行时间相同(约100d) 的条件下,未投加PAC的MBR中膜比通量仅为1.81×10-6m3/(m2·m·s),而投加PAC的MBR中膜比通量为5.14×10-6m3/(m2·m·s),为前者的2.84倍。可见在MBR中投加PAC对维持较高膜比通量具有显著效果,大大提高了产水量。

3.2 PAC与活性污泥的相互作用

在试验末期的镜检中发现,成熟活性污泥絮体的体积比PAC颗粒本身的体积大得多,每个较为独立的菌胶团中含有一颗或多颗PAC颗粒,镶嵌在污泥里仅起骨架作用。根据PA C及菌胶团的性质,在向MBR中投加PAC 后,炭粒与菌胶团之间即存在相互作用。最初,PAC 的吸附性和微生物的附着性使得混合液中大量的游离细菌、生物絮体迅速地包围PAC颗粒,形成较大的絮体;随着该絮体中微生物的数量增多,分泌的胞外聚合物也增多,当其他絮体 或游离细菌接近时,各自的胞外聚合物不规则地缠绕在一起,从而使絮体进一步凝 聚形成一个以PAC颗粒为骨架的大絮体,二者的相互作用使含有PAC颗粒的大絮体在曝气强度 较大的MBR中稳定存在。

3.3 PAC对MBR膜阻力影响的定量分析

投加PAC可形成粒径更大、强度更高、粘性更小的矾花。随着污泥絮体性能得以改善,膜阻 力随之减小。各项阻力的测量方法如下:①纯膜阻力Rm。清水试验时,没有膜污染阻 力和滤饼层阻力,Rt与Rm数值相等。②膜污染阻力Rp。系统运行到80 d 时,膜污染的发展已趋于稳定。取出膜并将其表面泥饼清洗干净,立即测定清水通量,测得 的阻力为Rm与Rp之和。③滤饼层阻力Rc。在稳定运行90 d时,膜表面泥 饼层已处于相对稳定状态,此时由通量算得的阻力为Rm、Rp和Rc之和。

在本试验中,取μ=1×10-3 Pa·s(假设滤液的粘度与清水的一样,温度为25℃ ),由此可按式(2)求得投加PAC后的各种膜阻力值(见表1),不投加PAC时的各项膜阻力值也列入表1。

表1 投加与未投加PAC的膜阻力比较 膜各部分阻力之差列于表2。

表2 投加PAC前后的混合液与出水COD之差 混合液与出水COD之差