首页 > 范文大全 > 正文

下一代无线宽带通信的核心OFDM/OFDMA

开篇:润墨网以专业的文秘视角,为您筛选了一篇下一代无线宽带通信的核心OFDM/OFDMA范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

本文简要介绍了WiMAX采用的基本传输和多址技术――OFDM/OFDMA的原理和系统设计问题。同样是采用OFDM/OFDMA技术,不同的技术标准也可能采用不同的系统设计。但可以肯定的是,OFDM/OFDMA技术由于易于宽带无线系统的低复杂度实现,已成为各种新一代宽带无线移动系统的首选多址技术。

近几年来,在新一代宽带无线通信系统中,OFDM(正交频分复用)技术已经取代单载波扩频技术(如CDMA),成为主流的基本发送技术。较早采用OFDM技术的包括DAB(数字广播)和DVB(数字电视)。随后,宽带无线接入系统IEEE 802.11g/a/n、802.16d/e、802.20(标准正在制定当中)也以OFDM/OFDMA技术为基础。另外,目前正在标准化的3GPP LTE(长期演进)和3GPP2 AIE(空中接口演进)技术也很可能选用OFDM及其改进型(下行OFDM、上行DFT-S-OFDM)作为基本多址技术。连近距离通信UWB技术的两个备选方案之一也采用了MB(多载波)-OFDM。预计未来的B3G技术也将基于OFDM。总之,目前无线通信领域所有的新兴技术几乎都以OFDM为核心

ofdm的技术原理

FDM/FDMA(频分复用/多址)技术其实是传统的技术,将较宽的频带分成若干较窄的子带(子载波)进行并行发送是最朴素的实现宽带传输的方法。但是为了避免各子载波之间的干扰,不得不在相邻的子载波之间保留较大的间隔(如图1(a)所示),这大大降低了频谱效率。因此,频谱效率更高的TDM/TDMA(时分复用/多址)和CDM/CDMA技术成为了无线通信的核心传输技术。但近几年,由于数字调制技术FFT(快速傅丽叶变换)的发展,使FDM技术有了革命性的变化。FFT允许将FDM的各个子载波重叠排列,同时保持子载波之间的正交性(以避免子载波之间干扰)。如图1(b)所示,部分重叠的子载波排列可以大大提高频谱效率,因为相同的带宽内可以容纳更多的子载波。

OFDM技术优势

OFDM技术之所以有代替CDMA,成为新一代无线通信核心技术的趋势,是因为它具有如下的优点:

(1) 频谱效率高

由于FFT处理使各子载波可以部分重叠,理论上可以接近Nyquist极限。以OFDM为基础的多址技术ofdma(正交频分多址)可以实现小区内各用户之间的正交性,从而有效避免用户间干扰。这使OFDM系统可以实现很高的小区容量。

(2) 带宽扩展性强

由于OFDM系统的信号带宽取决于使用的子载波的数量,因此OFDM系统具有很好的带宽扩展性。小到几百KHz,大到几百MHz,都比较容易实现。尤其是随着移动通信宽带化(将由≤5MHz增加到最大20MHz以上),OFDM系统对大带宽的有效支持,成为其相对于单载波技术(如CDMA)的“决定性优势”。

(3) 抗多径衰落

由于OFDM将宽带传输转化为很多子载波上的窄带传输,每个子载波上的信道可以看作水平衰落信道,从而大大降低了接收机均衡器的复杂度。相反,单载波信号的多径均衡的复杂度随着带宽的增大而急剧增加,很难支持较大的带宽(如20MHz以上)。

(4) 频谱资源灵活分配

OFDM系统可以通过灵活的选择适合的子载波进行传输,来实现动态的频域资源分配,从而充分利用频率分集和多用户分集,以获得最佳的系统性能。

(5) 实现MIMO技术较简单

由于每个OFDM子载波内的信道可看作水平衰落信道,多天线(MIMO)系统带来的额外复杂度可以控制在较低的水平(随天线数量呈线性增加)。相反,单载波MIMO系统的复杂度与天线数量和多径数量的乘积的幂成正比,很不利于MIMO技术的应用。

OFDM的系统设计问题

虽然基于上述优点,OFDM已成为新一代无线通信最有竞争力的技术,但这种技术也存在一些内在的局限和设计中必须注意的问题:

PAPR问题

当独立调制的很多子载波连贯在一起使用时,OFDM符号就有非常高的峰平比(PAPR)。高的PAPR带来了诸多不利因素,如增加模数转换和数模转换的复杂度、降低RF功率放大器的效率,增加发射机功放的成本和耗电量,不利于在上行链路实现(终端成本和耗电量受到限制)。为了降低OFDM的PAPR,目前已经提出了好几种技术,它们大体上分为三类:

信号预失真技术

编码技术

加扰技术

均衡和同步

OFDM调制的一个主要缺点是受同步误差的影响较大,尤其是对载波频率同步误差很敏感。

时间偏移会导致OFDM子载波的相位偏移,尤其在频带边缘相位偏移最大。但由于OFDM系统使用了CP,对时间同步要求在一定程度上可以放松。假如同步误差和多径扩展造成的时间误差小于CP,系统就能维持子载波间的正交性。然而,如果时间偏移大于CP,就会导致载波间干扰(ICI)和符号间干扰(ISI)。在有些环境下,OFDM符号的CP太短而不能完全避免ISI。CP的长度是由所要求的系统容量、信道相关时间和FFT复杂度(限制着OFDM符号周期)共同确定的,使用短的CP,允许有限的ISI,有利于实现更高的系统容量。

虽然插入CP降低了OFDM对时间同步精度的要求,但由于子载波宽度较小,对频偏较敏感,所以OFDM系统需要保持严格的频率同步,以确保子载波之间的正交性。

OFDM接收机可以对OFDM子载波经过平坦性衰落信道后的失真进行补偿,从而抑制ISI和ICI。这个操作可以在每个子载波进行FFT后设置单抽头的均衡器来实现,也即在频域进行均衡。均衡是进行信道补偿、抑制ICI和ISI的有效方法。只要信道时延扩展小于OFDM符号保护间隔,系统就可以使用简单的均衡抑制ISI,而防止性能下降。然而在进行高数据率传输和信道时延扩展较大时,必须使用更复杂的判决反馈均衡器(DFE)。

参数的设计

从上面对OFDM系统的讨论我们可以总结出,一个好的系统设计必须可以避免ISI和ICI,或者至少将他们抑制到可接受的程度。也就是说,要选择一个足够的CP以防止由频率选择性衰落而引起的ISI和ICI,同时要选择适当的OFDM符号长度,使信道冲激响应(CIR)至少在一个OFDM符号期间是不变的。

由于OFDM系统对频偏和相位噪声敏感,因此OFDM子载波宽度必须仔细选定,既不能太大也不能太小。因为OFDM符号周期和子载波带宽成反比,所以在一定的CP长度下,子载波宽度越小,则符号周期越大,频谱效率也越高(因为每个OFDM符号前都要插入一个CP,CP是系统开销,不传输有效数据)。但如果子载波宽度过小,则对频偏过于敏感,难以支持高速移动的终端。

CP长度的选择与无线信道的时延扩展和小区的半径大小息息相关,时延扩展和小区半径越大,需要的CP也越长。另外,在宏分集(Macrodiversity)广播系统中,由于终端收到各基站同时发出的信号,为了避免由于传输延迟差造成的干扰,需要额外加长CP。

优化设计对OFDM系统来说是非常重要的,实际系统需要处理各种不同的环境(信道参数很不同)。一个解决问题的办法是根据最差的情况(宏小区高速移动用户)优化参数,另一个可选的方法是根据各种不同的环境(室内、室外、宏小区、微小区、微微小区等)优化参数,但这就需要设计高度灵活的收发信机。

信道估计和导频设计

OFDM系统的信道估计,从某种意义上讲,比单载波复杂。需要考虑在获得较高性能的同时尽可能减小开销。因此导频插入的方式(时分复用还是频分复用)及导频的密度都需要认真考虑。

(1)导频插入方式

导频插入的方式如图2所示。

方式(a): TDM插入方式。导频在所有子载波上发送,时域的最小单元是一个包含导频信息的OFDM符号,系统每隔若干个数据符号传送一个导频符号。这种插入方式适用于时域变化小的信道,如室内环境。

方式(b): FDM插入方式。导频信息在时域上持续发送,在频域上只占用少数特定的预留子载波,每隔若干子载波发送一个导频子载波。这种插入方式对移动性的支持较好,但需要在频域上进行内插(interpolation)。

方式(c): 离散(Scattered)插入方式。这种插入方式是FDM和TDM方式的结合。在频域上,每隔若干子载波插入一个导频子载波。在时域上,每隔若干个符号插入一个导频符号。这种插入方式可以充分利用频域和时域上的相关性,用尽可能小的导频开销,支持高精度的信道估计,但这种方法需要同时在频域和时域上做内插。

不同的导频插入方式适用于不同的用途(如同步、相位噪声补偿、信道估计等),例如,采用专用的导频子载波(即FDM插入方式)适合用于相位补偿和载频的微调; 采用专用的导频符号(即TDM插入方式)适合用于信道估计和时域/频域的粗同步; 而离散的导频插入可同时用于信道估计和载频偏移的微调,从而有效地减少导频的开销。具体采用哪种插入方式,还要根据系统的实际需求选择。

控制信息的分布

如何在时域和频域插入控制信道,还是比较自由的。图3给出了一种控制信道插入方式。由于控制信息通常以最低的调制阶数进行调制,因此控制信息还可以作为额外的导频符号来提高信道估计的性能,并降低导频的开销。尤其是对高阶调制的数据的解调可以起到较大的辅助作用。不过这样一来,控制信息的位置必须与导频位置相对应,如果采用分散的导频插入方式,控制信道也应采用分散的插入方式。另外,这种方法要求先解调/解码控制信道,再开始数据的解调,因此增加了额外的处理时延。

链路自适应

由于可以在频域划分空口资源,AMC(自适应调制和编码)和功率控制技术在OFDM系统中更容易使用。系统可以对某个子载波或子载波组独立做AMC和功控,不同的子载波(组)可以采用不同的调制编码速率和发射功率,大大增加AMC和功控的灵活性。

另外可以根据信道的频率响应进行频域调度,选用信道质量较高的子载波(组)进行传输。链路自适应如果设计的好,可以最大限度地实现OFDM系统的容量。

上行同步

在上行OFDM系统中,由于要保持各用户之间的正交性,需要使多个用户的信号在基站“同步接收”,即各用户的信号需要同时到达基站,误差在CP之内。由于各用户距基站的距离不同,需要对各终端的发射时钟进行调整,距离较远的终端较早发送,距离较近的终端较晚发送,这种操作称为“上行同步”或“时钟控制”(Timing Control)。

多小区多址和干扰抑制

OFDM系统虽然保证了小区内用户间的正交性,但无法实现自然的小区间多址(CDMA则很容易实现)。如果不采取任何额外设计,系统将面临严重的小区间干扰(某些宽带无线接入系统就因缺乏这方面的考虑而可能为多小区组网带来困难)。可能的解决方案包括: 跳频OFDMA、加扰、小区间频域协调、干扰消除等。

OFDM技术的具体实现

随着OFDM技术的发展,也出现了一系列改进的OFDM技术,以解决OFDM本身的一些问题。下面我们对最主要的几个技术进行介绍。首先,OFDM本身不具有多址能力,需要和其他的多址技术,如TDMA、CDMA、FDMA等结合实现多址,包括OFDMA(正交频分复用)、MC(多载波)-CDMA、MC-DS(直接序列扩频)-CDMA、VSF-OFCDM(可变扩频因子正交频码分复用)等技术。DFT-S-OFDM(离散傅丽叶变换扩展OFDM)是一种为降低PAPR设计的OFDM改进技术。

子信道OFDMA

将OFDM和FDMA技术结合形成的OFDMA技术是最常见的OFDM多址技术,又分为子信道(Subchannel)OFDMA和跳频OFDMA。子信道OFDMA即将整个OFDM系统的带宽分成若干子信道,每个子信道包括若干子载波,分配给一个用户(也可以一个用户占用多个子信道)。

OFDM子载波可以按两种方式组合成子信道: 集中式(Locolized)和分布式(Distributed),如图4所示。集中式即将若干连续子载波分配给一个子信道(用户),这种方式下系统可以通过频域调度(scheduling)选择较优的子信道(用户)进行传输,从而获得多用户分集增益(图4(a))。另外,集中方式也可以降低信道估计的难度。但这种方式获得的频率分集增益较小,用户平均性能略差。分布式系统将分配给一个子信道的子载波分散到整个带宽,各子载波的子载波交替排列,从而获得频率分集增益(图4(b))。但这种方式下信道估计较为复杂,也无法采用频域调度,抗频偏能力也较差。设计中应根据实际情况在上述两种方式中灵活进行选择。

跳频OFDMA

子信道OFDMA对子信道(用户)的子载波分配相对固定,即某个用户在相当长的时长内使用指定的子载波组(这个时长由频域调度的周期而定)。这种OFDMA系统足以实现小区内的多址,但实现小区间多址却有一定的问题。因为如果各小区根据本小区的信道变化情况进行调度,各小区使用的子载波资源难免冲突,随之导致小区间干扰。如果要避免这样的干扰,则需要在相邻小区间进行协调(联合调度),但这种协调可能需要网络层的信令交换的支持,对网络结构的影响较大。

另一种选择就是采用跳频OFDMA。在这种系统中,分配给一个用户的子载波资源快速变化,每个时隙,此用户在所有子载波中抽取若干子载波使用,同一时隙中,各用户选用不同的子载波组(如图5所示)。与基于频域调度的子信道化不同,这种子载波的选择通常不依赖信道条件而定,而是随机抽取。在下一个时隙,无论信道是否发生变化,各用户都跳到另一组子载波发送,但用户使用的子载波仍不冲突。跳频的周期可能比子信道OFDMA的调度周期短的多,最短可为OFDM符号长度。这样,在小区内部,各用户仍然正交,并可利用频域分集增益。在小区之间不需进行协调,使用的子载波可能冲突,但快速跳频机制可以将这些干扰在时域和频域分散开来,即可将干扰白化为噪声,大大降低干扰的危害。随着各小区的负载的加重,冲突的子载波越来越多,这种“干扰噪声”也会积累,使信噪比降低,但在负载不是很重的系统中,跳频OFDMA可以简单而有效地抑制小区间干扰。

DFT-S-OFDM

DFT-S-OFDM是基于OFDM的一种改进技术。由于传统OFDM技术的PAPR较高,在上行链路用户便携或手持终端有一定困难。OFDM本身也可以采用一系列降低PAPR的附加技术,如子载波预留和削波等。另一种方法是在发射机的IFFT处理前对系统进行预扩展处理,其中最典型的就是用离散傅丽叶变换进行扩展,这就是DFT-S-OFDM技术。

如图6所示,将每个用户所使用的子载波进行DFT处理,由时域转换到频域,然后将各用户的频域信号输入到IFFT模块,这样各用户的信号又一起被转换到时域并发送。经过这样的改进,我们发现每个用户的发送信号由频域信号(传统OFDM)又回到了时域信号(和单载波系统相同),这样PAPR就被大大降低了。由于在这个系统中,每个用户的发送信号波形类似于单载波,也有人将其看作一种单载波技术,虽然它是从OFDM技术演变而来的。

在接收机端,系统先通过IFFT将信号转换到频域,然后用频域均衡器对每个用户的信号进行均衡(在发射机端须插入CP以实现频域均衡),最后通过DFT解扩展恢复用户数据。