首页 > 范文大全 > 正文

交通管线论文:轨道交通管线巡查法探析

开篇:润墨网以专业的文秘视角,为您筛选了一篇交通管线论文:轨道交通管线巡查法探析范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

作者:陈恒 施立群 单位:宁波市测绘设计研究院

如英国的RD系列、美国的Subsite系列等,电磁波法———地质雷达探测。电磁波法探测管线常用的仪器设备是地质雷达 (GroundPene-tratingRadar),它利用超高频电磁波探测地下介质的分布情况,目前常用的管线探测雷达有日本的GEORADAR系列、瑞典的RAMAC系列等:地质雷达一般以剖面法或网格法作业。探测前,必须根据现场的地质、地球物理特点进行已知管线的现场试验,以选定最佳的测量参数。地震波法———瞬态瑞雷波探测。地震波法是利用地下各种介质的弹性差异,由人工震源产生地震波的方法探测地下管线。一般采用瞬态瑞雷波法探测。在管线探测方法中,电磁法以其经济、高效和准确的优点,是目前最常采用的探测金属管线的方法,电磁波法和地震波法由于其作业效率较低,一般用于解决非金属管线和管线探测仪无法探明的疑难管线,如并排管线、深度较深的管线等。

传感器探测法传感器探测法实际上是将非开挖管线施工领域中导向钻探方法引入到管线探测,其工作原理是将传感器置入被探管道内部,通过在地面接收传感器发射的固定信号进行定位和定深,该法(又称导向仪法)主要适应于通信、电力、雨水、污水等非封闭式埋设的管线,标称精度平面和高程为5h%(h为管线中心埋深),有效探测深度24m。宁波市轨道交通1号线福明路站电力管线(埋深2.8~7.8m)27个点位开挖验证(借助轨道车站明挖施工进行),结 果 为 平 面 中 误 差 为0.186 m(限 差 为0.265m),高程中误差为0.277m(限差为0.398m),满足《城市地下管线探测技术规程》要求。磁梯度法在均匀无铁磁性物质的土层中,地球磁场强度理论上为均匀场,如果有铁磁性物质存在,则因感应磁场而产生磁异常,且磁异常强度由近及远逐渐衰减。因此,可以通过观测其磁异常的变化,尤其是垂直分量Za的梯度值的分布来判定异常物的平面位置及埋深,通过钻孔的手段将磁力梯度仪置入钻孔内,由上而下测量铁磁物质在垂直方向上的Za曲线变化,可以得到较理想的效果。可知,在接近金属管的钻孔内,Za梯度值随深度的变化非常明显,在接近铁磁物质的深度位置,梯度值变化强烈,犹如一个“S”型。在远离铁磁物质的数据处理方法1)图形数据和属性数据一体化保存。在数据处理过程中,充分考虑了设计单位对信息化现状的需求,将管线所有信息(如权属单位、起点高程、终点高程、埋深等)通过属性的方式全部存储在AutoCAD中,当设计单位需查询相关信息时,无须再去寻找海量纸质资料,可以直接借助CAD扩展属性查询命令,查询到与数据库中等同的信息。图4所示为查询YS609点信息的查询界面。

轨道交通管线详查不同于一般工程的管线探测。为确保管线探测精度,应该注意以下几点:1)多种探测技术方法灵活运用。复杂情况下,几种方法联合探测,互相检核和验证。由于轨道交通线路狭长,施工开挖较深,因此,对金属管线的探测应以管线探测仪为主;对于非金属管线或埋深较大的管线主要以雷达或地震波法探测;对于测区内无出露点的管线,应拓宽测区范围,尽可能找到出露点加以验证。2)现场条件不具备或不满足探测方法实施时,通过辅助手段创造探测条件,以优化探测环境,满足探测要求。如对于疑难的排水管线,向管线中置入金属导线,通过金属导线来进行探测。3)对深埋电力、电信管线可采用传感器探测法(导向仪)进行探测。4)对深埋金属管线可使用磁梯度法或辅以打样洞进行定位定深(必要时可采用PCM防腐检测仪进行粗略定位)。5)对疑难地段,在判断不准的情况下,可辅以钎探或开挖。