首页 > 范文大全 > 正文

不同掺量的粉煤灰对水泥土力学性能的影响

开篇:润墨网以专业的文秘视角,为您筛选了一篇不同掺量的粉煤灰对水泥土力学性能的影响范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:为了研究粉煤灰掺量对水泥土强度的影响,对4组不同掺量的粉煤灰进行了无侧限抗压强度试验,并在水泥掺量和粉煤灰掺量均为9%的试样中掺入不同粒径的天然鹅卵石和破碎花岗岩,分析掺粉煤灰水泥土与砾石的联合作用。结果表明:随着粉煤灰掺量增大,无侧限抗压强度增大;当粉煤灰掺量高于水泥掺量,强度增长不明显;掺砾试样抗压强度大于未掺砾试样强度,且掺入天然鹅卵石试样比掺人工破碎灰岩强度低。

关键词:水泥土;粉煤灰;砾石;掺量

中图分类号:U414.1文献标志码:B

Abstract: In order to study the effect of fly ash content on the strength of cemented soil, the unconfined compressive strength tests were carried out on four sets of fly ash with different contents. The pebbles and crushed granite with different grain sizes were added to the samples that contain 9% of cement and 9% of fly ash to analyze the combined effect of cemented soil mixed with fly ash and gravel. The results show that with the increase of fly ash content, unconfined compressive strength increases; when the amount of fly ash is higher than the cement, the strength growth is not obvious; the compressive strength of gravel sample is greater than that of unbonded sample, and the strength of sample mixed with pebbles is lower than that with artificially crushed limestone.

Key words: cement soil; fly ash; gravel; content

0引言

粉煤灰在各项工程中被再利用,不但降低了工程造价,还对节约土地和环境保护也非常有意义。水泥土作为填方路基材料的一种,在掺入适当比例的粉煤灰后,不仅能够增加土体的强度,而且对路基的稳定性也有一定的提高[1]。黄丽娟、邵俐等研究了粉煤灰掺量对水泥土强度的影响,认为粉煤灰活性的发挥受水泥和粉煤灰的掺入量以及龄期的影响;裴向军等研究了活化粉煤灰对高矿化度水泥土膨胀抑制作用,结果表明活化粉煤灰能有效抑制水泥土的膨胀破坏;台佳佳等通过室内试验认为在水泥土中掺入粉煤灰不仅能提高水泥土的强度而且对其耐蚀性也有积极的影响[25]。

目前,内对掺粉煤灰水泥土研究较全面,但综合考虑水泥掺量与粉煤灰掺量的系统研究,砾石对掺粉煤灰水泥土的影响的研究却较少。本文进行了不同养护时间内,对不同水泥掺量的粉煤灰水泥土进行无侧限抗压强度试验,分析水泥掺量、粉煤灰掺量和龄期对其强度特性的影响。此外,在水泥掺量和粉煤灰掺量均为9%的试样中掺入质量分数为40%的不同粒径的天然鹅卵石和人工破碎花岗岩,研究砾石对掺粉煤灰水泥土的影响作用。

1试验

1.1试验材料

不同掺量下的粉煤灰水泥土是由黏土、水泥、粉煤灰、砾石和水以不同的比例混合而成。黏土由高岭石、蒙脱石和伊利石等矿物组成,比重为2.75,液限为47.4%,塑限为24.1%。水泥为普通硅酸盐水泥,约占总质量的10%~15%,强度等级为32.5,细度(80 μm)78%,初凝时间为320 min。粉煤灰主要矿物成分为CaO、SiO2、Al2O3、Fe2O3、MgO,质量百分比分别为641%、5745%、2128%、1350%、136%,密度ρ为2.11 g・cm-3,掺水比分例为108%,烧失量为2.19%,鹅卵石和花岗岩比重分别为2.62%和2.67%。试验用水均采用实验室自来水。

1.2试验步骤

在室外取一定量的天然土烘干、碾碎,并掺入水泥含量分别为6%、9%、12%和15%的4组试样,再在上述4组混合料中分别掺入6%、9%、12%和15%的粉煤灰,水灰比为085。试样用砂浆搅拌机拌和均匀后,注入模具内。模具尺寸为Φ110 mm×225 mm,捣实后覆盖,24 h后脱模;脱模后在标准养护条件下养护7、28、90 d。此外,为研究掺粉煤灰与砾石的联合作用对水泥土的影响,在水泥和粉煤灰掺量均为9%的试件中掺入质量分数为40%的天然鹅卵石和人工破碎花岗岩。其中天然鹅卵石的粒径为5~10 mm,人工破碎花岗岩粒径分为3种2~5 mm、5~10 mm和10~20 mm。对掺入砾粒径为5~10 mm的试样组在标准养护条件下养护7、28、90 d,其余2组掺砾试样养护28 d,具体试验方案如表1所示。试样养护达到规定龄期后,采用应变式无侧限压缩仪进行无侧限抗压强度试验,剪切速率为132 mm・min-1。本次试验采用6%作为水泥起始掺量,主要是由于水泥掺量低于5%时,难以形成水泥石骨架,水泥水化物与土颗粒离子交换反应也难以充分进行。

2试验结果与分析

2.1粉煤灰对水泥土强度变化规律的影响

为了研究不同粉煤灰掺量对水泥土无侧限抗压强度的影响,对掺量不同的4种水泥土分别掺入质量分数为6%、9%、12%和15%粉煤灰,进行无侧限抗压强度试验,取峰值强度为其无侧限抗压强度,结果如图1所示。由图1可知,粉煤灰的掺入量对7 d和28 d龄期的试样无侧限抗压强度影响不大,试样强度主要受水泥的掺入量影响。随着水泥掺量的增大,试样抗压强度增大;90 d龄期时,粉煤灰的掺量对水泥土无侧限抗压强度影响明显,试样强度受水泥掺量与粉煤灰掺量共同影响;当粉煤灰掺量小于水泥掺量时,相同水泥掺量试样随粉煤灰掺量的增多强度增大,且近似呈线性增长;当粉煤灰掺量大于水泥掺量时,随粉煤灰掺量的增多,试样强度增大不明显,近似保持不变[610]。掺入粉煤灰的水泥土后期强度明显增长的原因有:部分消耗于与土中酸中和的水泥,被粉煤灰中的SiO2和Al2O3与Ca(OH)2反应所生成的水化硅酸钙和水化铝酸钙部分补偿;粉煤灰中大量存在的CaO,能激化水泥与酸溶液接触后形成吸附层,提高了水泥水化的进程[1115]。同时,粉煤灰对水泥熟料具有分散作用,减少有机质对水泥水化的阻碍[1618]。