首页 > 范文大全 > 正文

风扇上盖模具设计论文

开篇:润墨网以专业的文秘视角,为您筛选了一篇风扇上盖模具设计论文范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

高速铣削加工技术已广泛地应用于模具制造行业之中。高速铣削具有如下特点:利用高速低负荷状态更快地切除材料,高速切削的主轴转速及进给速度都很高,这样可使大部分的切削热通过切屑带走,以减少零件的热变形;此外,高速切削低负荷切削意味着可通过减小切削深度而减轻切削力,从而减少切削过程中的振动和变形。本文以风扇上盖为例,综合利用UGMoldWizard的功能,系统地阐述了设计过程及要点,设计了一套风扇上盖的注塑模具,并对风扇型腔进行了高速铣削加工。文中实例表明,在注塑模具设计过程中应用UGMoldWizard,可以显著缩短模具设计和改进的周期,提高塑料产品的品质,为企业节省了生产成本,提高了经济效益。

1风扇上盖的注塑模具设计

基于UG的注塑模具设计的主要流程是:在UG建模环境下创建塑件的三维模型;在UGMoldWizard设计环境加载塑件;对塑件进行模具分型和结构设计。具体设计过程如下:

1)创建塑件三维模型

根据提供的塑件样品,在UGModeling模块下灵活运用各种建模命令,创建风扇上盖的三维模型如图1所示。

2)注塑模具总体结构的确定

针对这个模型,为了保证模具的质心尽量靠近其几何中心,又要尽可能的简化模具结构,拟采用一模一腔的设计思路;由于零件对底面、侧面粗糙度要求不高,可选用大水口系统模架;为了提高加工效率和节省成本,定模型芯和动模型芯均采用整体嵌入式结构。将创建好的零件三维模型文件拷贝到即将建立的模具结构项目文件所在的目录下,然后用UGMoldWizard模块所对应的工具条中的按钮(Load)打开项目初始化对话框,材料选择ABS+PC;收缩率为1.0055,输入相应的参数后,进入UGMoldWizard模具设计系统项目初始化如图2。

3)分模

分模是注射模具设计的最重要的一环,它是用分模面将包含模具型腔的体积块分开成动模型芯和定模型腔,而分模面就是动模型芯和定模型腔的接触面。分模一般按以下步骤进行:修补塑件;提取塑件的分型线;生成分模面;分模得到动模型芯、定模型腔和滑块型芯。对于具有孔或者槽的塑件,在分模前需要修补好这些结构。修补分为片体修补和实体修补,风扇上盖由于具有开放的空间,需要采用实体修补,经实体修补后的风扇上盖产品和相应的实体修补块如图3所示。图3修补塑件塑件修补好后,开始提取塑件的分型线。分型线是产品的最大轮廓线,是产生分模面的基础。电池扣分型线可以通过搜索修补好的塑件的边线获取,自动搜索分型线,如图4所示。图4分型线分模面是以产生的分型线为基础,采用有界平面的方法获得。然后提取区域,使得构成塑件的所有面都被指派到型芯侧或型腔侧。如果面的总数等于型芯和型腔的面的总和,则可以通过自动或分步的方法进一步获得型腔和型芯,如图5。

4)确定模架和模具标准件

针对型芯和型腔的大小,选择合适的模架。选择大水口系统模架,如图6所示,系统自动载入模架。接着为模具选择标准件,包括主流道衬套、定位环、顶针、拉料杆、复位弹簧、垃圾钉、支撑柱等。

5)创建浇口特征

调用浇口命令,编辑参数,再点击“浇口点表示”,选择“面上的点”,在弹出的“Pointmoveonface”对话框编辑参数,单击确定完成“浇口点”的创建。在“浇口设计”对话框中点击应用,系统弹出“点构造器”对话框,选择“浇口点”,在“矢量构造器”对话框中选择-ZC,完成浇口的创建(图7)。6)冷却系统设计利用冷却系统特征,分别创建冷却系统的水道特征、堵头特征、水管连接特征等。这套模具的冷却系统主要是用来冷却成型型腔,可以创建形冷却水道示意图,如图8所示。

2电脑风扇型腔高速加工技术的应用

高速铣削加工用量的确定主要考虑加工效率、加工表面品质、刀具磨损以及加工成本。不同刀具加工不同工件材料时,加工用量会有很大差异,目前尚无完整的加工数据,可根据实际选用的刀具和加工对象参考刀具厂商提供的加工用量选择。一般的选择原则是中等的每齿进给量fz,较小的轴向切深ap,适当大的径向切深ae,切削速度[6]。电脑风扇型腔数控加工在DMU60T加工中心上进行,采用的数控系统是西门子840D。风扇型腔如图9型腔,材料是模具钢P20,选用的刀具是TiAlN涂层刀。加工参数设置如表1所示。

1)粗加工策略

粗加工的主要目标是追求单位时间内的材料去除率,并为半精加工准备工件的几何轮廓,保证后续半精加工或精加工余量均匀,以利于粗加工刀路的平稳、高效。UG型腔铣程序分层切除风扇上盖型腔零件材料,UG软件粗加工最常用的粗加工方式有平面铣、型腔铣和插铣[7]。高速铣削粗加工采用型腔铣(跟随周边),其下切或行间过渡部分应该采用斜式下刀或圆弧下刀,并且尽量采取顺铣的加工方式,刀具路径的尖角处要采用圆角的光顺处理,这样才可能保持刀具负荷的稳定,减少任何切削方向的突然变化,从而符合高速加工的需求。根据粗加工策略和参数设置,刀具轨迹仿真如图10。利用设定较小的切削步距和切削深度,并考虑切削深度和进给率的合理搭配,以便保持刀具的切削载荷恒定,进而保持恒定的材料切除率[8]。

2)半精加工策略

半精加工的主要目标是使工件轮廓形状平整,表面精加工余量均匀。UG加工软件应用其中的参考功能,其残留粗加工能自动识别上一道工序的残留区域和拐角区域,自动判别在上一道工序留有的台阶的层间进行切削,系统智能地优化刀具路径,使用户能够获得空走刀最少的优化的刀具路径。根据半精加工策略和参数设置,刀具轨迹仿真如图11。

3)精加工策略

精加工的主要目标是获得几何尺寸、形状精度及表面品质的工件,保证加工的零件符合设计要求的表面品质和尺寸精度。UG的精加工的连接处应尽量采用圆弧或螺旋等方式切入切出工件,要尽量减少抬刀次数和减少刀具路径频繁的方向变化。使用UG进行高速精加工,不仅要注意使用拐角过渡光顺、圆弧进退刀加工策略外,最好把零件表面分为陡峭区域和非陡峭区域分别进行精加工,以保证恒定的残留高度。陡峭区域适合选用等高轮廓铣方式,其中切削参数选项中的层之间连接方法选择直接对部件进刀方法,该种层间连接方法中间不抬刀,生成的刀具路径连续光滑,没有不同层高之间的刀轨移动,避免了由于抬刀和进刀频繁对零件表面品质的影响。非陡峭区域适合选用固定轴轮廓铣方式,可通过设置刀轴的方向、投影矢量和驱动方法等在复杂轮廓表面上生成刀具路径。根据精加工策略和参数设置,刀具轨迹仿真如图12。

4)清根加工策略

使用UG清根加工方法能够沿着部件表面形成的凹角与沟槽生成刀轨,系统根据加工最佳法则自动确定清根的方向和顺序[9]。用该驱动方法创建刀具路径时,系统使刀具尽可能与部件几何保持接触,减少刀具的非切削运动,进一步优化了刀轨。当塑料模具中出现复杂的型芯或型腔时,使用该策略可减少精加工或半精加工的时间,并可确保余量均匀,保证刀具路径平滑光顺,切削负荷均匀一致。

结语

传统的注塑模具设计,从模具分型到具体结构设计,完全依靠自身的经验,对设计者的要求较高,并且效率低下。现代制造技术在模具制造业得到了广泛应用,高速铣削加工技术以其高效、高精度和高的表面加工品质在模具制造中起到越来越重要的作用。采用UGMoldWizard可以让系统引导设计者逐步完成设计内容,并且创建出来的模具与塑件产品参数相关,这样模具设计变得更加快捷、简单、容易修改。本文以风扇上盖为例,详细介绍的这种基于UGMoldwizard模块的注塑模具设计,操作简便,快速高效,具有很大的灵活性。应用UG软件对模具进行设计,提高产品的设计效率,避免传统方法人为因素多,要多次修改试模的缺点,减少模具设计及制造周期,提高了模具产品品质和经济效益。

作者:赵振宇 蔡耀安 张泽熙 肖永山 单位:深圳信息职业技术学院