首页 > 范文大全 > 正文

道路照明电缆截面的优化计算

开篇:润墨网以专业的文秘视角,为您筛选了一篇道路照明电缆截面的优化计算范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要 本文给出了计算道路照明电缆面的几种方法,具有较强的理论性和实用性,对设计工作有一定的指导意义。

关键词 电压降 电缆 阻抗 路灯

------------------------------------------------------------------------------

1.引言:

道路照明是大型厂矿电气设计中的一项内容,在市政工程设计中更是一项重要的内容。《城市道路照明设计标准 CJJ 45-91》第5.1.4条中明文规定,低压照明线路的末端电压不应低于额定电压的90%或不应低于始端电压的95%。在以往多年的设计中,许多设计人员在选择电缆时都是从一而终(根据路灯的数量算出总的计算电流,然后查表得出满足电压降的电缆最小截面),这样的算法(假设所有的路灯集中在线路的末端)没有考虑实际情况(路灯是在线路上均匀分布的),会造成很大的浪费。如果能有一种简便而且准确的计算方法,使得电缆的截面在满足电压降的前提下大为减小,可以节省大量的投资,下面把本人总结出的几种计算方法奉献给大家,供各位同行参考。

2.线路电压损失和阻抗的计算公式

三相平衡负荷线路电压损失的计算

单相交流荷线路电压损失的计算

式中Uex------额定线电压(kV)

UeФ-----额定相电压(kV)

I------计算电流(A)

L------线路长度(km)

Ro,Xo------线路单位长度的电阻和感抗(欧/公里)

电缆线路的阻抗计算公式

式中r------电导率(m/Ω.mm2),铜芯电缆或导线为53

Df-----各相导线或电缆间的几何均距(mm)

d------导线或电缆主芯的直径(mm)

L------线路长度(m)

表1 各种电缆的电阻和感抗

3.照明灯具的基本参数

灯具的类型主要有三种:高压钠灯、高压汞灯、金属卤化物灯

灯具的启动时间为3~5分钟,启动电流大约是工作电流的1.5倍。

灯具自带镇流器,配补偿电容后的功率因数CosФ>0.85

4.电压损失计算公式的简化

在电压损失的计算公式中,如果对参数(RoCosФ+XoSinФ)进行简化,假设 Xo=0

那么(RoCosФ+XoSinФ)=RoCosФ 电压损失的计算就很简单。简化后的数据乘以修正系数就是实际数值。

表2 各种电缆的(RoCosФ+XoSinФ)简化前后的结果(取CosФ=0.85 L=1km)

5.优化计算前的准备工作

由于灯具的启动电流大约是工作电流的1.5倍,启动时的电压降允许达到正常工作时的2倍,计算电流I=∑灯具的工作电流

假设所有的照明灯具集中在线路的末端,根据计算电流、线路长度、末端电压降为5%等条件,按照电压损失计算公式或者查设计手册,算出需要的电缆截面(这种方法被称为“从一而终法”)。

6.优化计算法

6.1 负荷距法

在实际情况下,所有的灯具并不是集中

在线路的末端,而是均匀分布在线路之上。我们在整条线路采用同一根电缆的前提下,把线路分成n段(n>1),根据每一段的负荷距分别算出其电压降,在保证末端电压降为5%等条件下反算出需要的电缆截面,并且与“从一而终法”算出的结果进行比较,看看电缆截面能够缩小多少。

把线路分成n段后,每一段的计算长度均为L/n;但是各段的计算电流不同,第1段的计算电流为I,第2段的计算电流为[(n-1)/n]I,第3段的计算电流为[(n-2)/n]I,以此类推,第n段的计算电流为I/n。

把各段的负荷距相加,得出如下结果:

负荷距法”计算的结果是“从一而终法”的倍

表3 负荷距法与“从一而终法”的比较

从比较结果可以看出,电缆截面可以减小25%~45%

6.2 分段变径法

对于较长的道路照明线路来说,电缆从一而终会造成很大的浪费,如果把线路分成n段,通过调节各段的电缆截面,使得每一段的电压降均为(5%)/n。

与“负荷距法”的分段情况一样,每一段的计算长度均为L/n,第1段的计算电流为I,第2段的计算电流为[(n-1)/n]I,第3段的计算电流为[(n-2)/n]I,以此类推,第n段的计算电流为I/n。

各段的电压降计算公式如下:

假设采用‘从一而终法’算出的整段电缆截面为S,采用‘分段变径法’算出的各段电缆截面分别为:

在线路分成2段的情况下,S1=SS2=0.5S

在线路分成3段的情况下,S1=SS2=0.67SS3=0.33S

在线路分成4段的情况下,S1=SS2=0.75SS3=0.5SS4=0.25S

在线路分成5段的情况下,S1=SS2=0.8SS3=0.6SS4=0.4SS5=0.2S

在实际情况下,每段电缆里都有一组灯具均匀分布,所造成的结果就是实际负荷距比计算值减小(见表4),因此每段的实际电压降都小于(U%)/n.

表4 负荷距减小比例

在‘分段变径法’里,如果分段数太多,造成电缆的规格过多,采购麻烦,频繁变径也会给施工带来许多不变。因此分段时以5段为宜,最多不要超过10段。

应用举例

一条1000米长的路灯线路上共有90盏125W高压汞灯,灯具工作电流为1.25A。采用三相电源供电,每相电源上接30盏灯。

按照‘从一而终法’,假设所有灯具集中在线路末端,计算电流I=37.5A。按照cosφ=0.85 末端电压降为5%,查表得知需要的铜芯电缆主芯截面为S=70mm2

7.1采用‘负荷距法’选择电缆

将线路平分为10段,每段每相电源上接3盏灯,那么整条电缆的主芯计算截面为70x0.55=38.5mm2 ,选择规格为1(3x50+2x25)的电缆。

7.2采用‘分段变径法’选择电缆

将线路平分为5段,每段每相电源上接6盏灯,那么各段电缆的主芯截面分别为:

S1=S=70mm2

S2=0.8S=56mm2

S3=0.6S=42mm2

S4=0.4S=28mm2

S5=0.2S=14mm2

考虑到现场实际情况,将计算结果作适当放大,最后选择的电缆截面如下:

第1段----1(3x70+2x35)

第2段----1(3x50+2x25)

第3段----1(3x50+2x25)

第4段----1(3x25+2x16)

第5段----1(5x16)

补充说明

⑴从线路电压损失的二个计算公式中可以得出这样的结论:在同样的电流下,三相平衡线路的电压损失只有单相交流线路的一半,在设计照明线路时,应该采用三相电源供电,灯具尽可能地平均分布在三相线路上,零线中只流过三相不平衡电流,零线上的电压降可以忽略不计。

⑵在上述的算法中,虽然只进行了三相平衡线路的计算,但是其结论同样适用于单相交流线路。

⑶通过优化计算得出的电缆截面只是理论值,在应用中还要考虑现场的实际情况(例如分段处的接触电阻、发热以及其它线路的电磁影响),应在理论值的基础上放大一点,向上选择最靠近的一档电缆。

⑷用“分段变径法”算出各段电缆的截面后,如果每段内的灯具数量较多,由于该段内灯具呈均匀分布,实际负荷距减小造成该段电压降减小,电缆截面不一定要放大。

结束语

在满足线路末端电压降的前提下,优化计算后电缆的截面比“从一而终法”大为减小,解决了电缆的浪费问题,自认为是简便可行的办法。在近几年的工厂设计和市政工程设计中采用此方法,取得了明显的效果,得到了实践的验证。

参考文献:

1.《钢铁企业电力设计手册》

2.《城市道路照明设计标准 CJJ 45-91》

------------

【作者简介】蒋运安(1963-),男,汉族,中冶华天工程有限公司高级工程师,从事冶金行业工厂电气设计工作。

注:文章内所有公式及图表请以PDF形式查看。