首页 > 范文大全 > 正文

宝坻区生活垃圾卫生填埋场渗滤液处理工艺概述

开篇:润墨网以专业的文秘视角,为您筛选了一篇宝坻区生活垃圾卫生填埋场渗滤液处理工艺概述范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

中图分类号:R124.3 文献标识码:A 文章编号:

渗滤液水质概况

宝坻区生活垃圾卫生填埋场,采用边填埋、边覆盖的填埋工艺,利于臭气污染控制和雨污分流。由于渗滤液产生量小且浓度相对较高,尤其是夏季,易腐性物质含量相对较高,加之高温作用,浓度高,经过调节池停留及均质后,其CODcr浓度一般不超过30000mg/l。冬季氨氮浓度高,氨氮浓度不超过3000mg/l,冬季难降解物质含量高,因此CODcr浓度一般不低于3000mg/l。冬季pH可达5,极端情况下pH为4,夏季pH最高可达8,极端情况下pH为8.5。

表1 原水水质表

渗滤液处理出水限值

表2 出水限值计算表单位:mg/l(凡注明者除外)

渗滤液处理工艺概述

3.1 工艺流程

渗滤液自调节池由原水泵提升进入厌氧系统,在中温厌氧罐内,经过水解酸化、产酸、产甲烷等复杂的生化过程,把渗滤液中大部分有机污染物去除,使COD得到充分降低,出水自流进入膜生物反应器(MBR);在一级硝化反硝化系统中,由于一级反硝化罐内搅拌器搅拌作用使渗滤液与MBR机组浓水充分混合,在低溶解氧状态下,经过反硝化作用脱除总氮,出水自流进入一级硝化反应阶段;硝化反应阶段内,在高溶解氧状态下,经过充分的硝化反应,水中氨态氮转化为硝态氮,同时有机污染物浓度大幅降低;污水自流进入二级强化硝化反硝化系统,经过强化脱氮作用,大幅降低出水硝态氮;污水溢流进入MBR机组,经自吸泵抽吸作用MBR产水进入中间水箱,MBR浓水返回一级反硝化罐;MBR产水经纳滤高压泵加压进入纳滤膜处理系统,利用纳滤膜组件对溶质的截留作用,使各种污染物含量降低,纳滤产水暂存于中间水箱,纳滤浓缩液利用余压回流至调节池;纳滤产水经反渗透供水泵和高压泵加压进入超低压反渗透膜处理系统,在高压状态下利用反渗透膜的精细拦截作用,使水中各项污染指标降低并满足排放标准,反渗透产水达到《生活垃圾填埋场污染物控制标准》(GB 16889-2008)表2的标准达标排放,可用于绿化和地面冲刷,反渗透浓缩液利用余压自流至污泥池。

3.2 辅助设施

3.2.1 中温厌氧加热及换热系统。保证厌氧反应处理效率,保证处理系统稳定性。

3.2.2 曝气系统。保证好氧系统对氧气的需要和对系统的搅拌作用以及MBR膜组的气体擦洗污染控制。

3.2.3 加药系统:在二级强化反硝化系统中,可向外加碳源解决碳氮比失调问题,保证碳氮比不小于5。

3.2.4 膜污染控制系统:为提高MBR膜组、纳滤系统(NF)及超低压反渗透(RO)系统的的清洗系统。由于水的特殊性及膜技术的特点,为保证出水率、出水量和处理效果,必须对对膜定期清洗,所以配置膜清洗、防结垢加药系统。

3.2.5 冷却系统:考虑好氧反应对温度的要求,为了提高硝化反应速率与效果,好氧系统配置冷却系统控制好氧反应温度。

3.2.6 二次污染控制系统。

3.3.6.1 厌氧沼气燃烧器。原水污染物浓度高,产生沼气采用燃烧技术进行燃烧,生成的水气排放大气。

3.2.6.2 污泥及浓水采用回灌方式处理。中温厌氧和浸没式膜生物反应器(MBR)生物处理系统,为低产泥系统,生化系统产泥回流至厌氧反应器进行内源消化。

3.2.6.3 消泡剂投加系统。为防止特殊情况下好氧反应器出现泡沫,配置消泡剂投加系统。

3.3 应对水质变化措施

3.3.1 建场初期高氨氮浓度渗滤液应对措施

厌氧反应器的应用对于早期填埋场,渗滤液中氨氮浓度高,一些管理较好的填埋场,由于控制二次污染,填埋、覆盖同步进行,雨污分流充分,渗滤液产生量少但浓度较高,需要强有力的去除高浓度有机污染物的厌氧设备。

膜生化反应器(MBR)的应用,以膜组件代替传统污水生物处理工艺中的二沉池,通过膜组件的高效截流作用使得泥水彻底分离;并且硝化池中高活性污泥浓度(15g/L)和运行过程中污泥效菌(特别是优势菌群)的出现,提高了生化反应速率,因此适用于有机污染物浓度高的难降废水的处理。

由于膜生化反应器(MBR)实现了反应器污泥龄(SRT)和水力停留时间(HRT)的彻底分离,活性污泥不因产水而损失,在运行过程中,活性污泥会因进入的有机物浓度的变化而变化,并达到一种动态平衡,并且较大的动力循环导致了污水的均匀混合,因而使活性污泥有很好的分散性,大大提高了活性污泥表面积,这使系统出水稳定并且有耐冲击负荷的特点。

膜生化反应器由于滤膜的截流作用避免了微生物的流失,生化反应器内可保持较高的污泥浓度,从而提高了体积负荷,降低了污泥负荷,提高了污泥泥龄,并且营造了有利于增殖缓慢的微生物,如硝化细菌(脱氮优势菌群)的生长环境,提高了系统的硝化能力,并且由于硝化罐内采用了经过特殊加工的曝气头,使得氧利用率较其他曝气方式要高,使得高浓度氨氮得到有效去除。随时间延长,对应渗滤液中氨氮含量增加采取的相应措施:通过适当提高反应器内的污泥浓度,提高反应器内的微生物总量从而提高系统的硝化能力,并且提高反应器的曝气量以提高系统氨氮的去除能力。并且本工艺按最大硝化负荷设计,已经考虑了水量与水质的冲击负荷。

3.3.2 建场中后期营养比列失调的应对措施

渗滤液中的碳、氮、磷三种元素的比例。对于磷的缺失,只需在污泥培养阶段投加磷酸盐即可,而在运行阶段,膜生化反应器对于磷的需求不是很多。对于垃圾渗滤液而言,主要是碳、氮比例的失调。在填埋场运行初期,一般不存在该问题,随着填埋场运行时间的延长,渗滤液中的碳、氮比例将会失调,碳源缺少。

由于前置式反硝化在很大程度上降低了生化反应器的碳用量及需氧量,因此膜生化反应器采用了前置式反硝化与硝化后置的生化反应器,从部局上解决了碳、氮比例失调,碳源缺少的问题。而随着运行时间的延长,当渗滤液中碳源严重不足时,可向反硝化罐中投加外加碳源如甲醇、醋酸、甚至面粉等解决该问题。当渗滤液中的N/C大于0.2时(此种情况下碳、氮比失调较严重),MBR工艺的处理效率仍然能够保证很高的出水水质达标。

3.3.3 保障出水达标措施:超低压反渗透保证出水达标

本工艺设计了纳滤、反渗透处理系统,确保了出水水质的稳定达标。在夏季运行条件较好时,纳滤出水可完全满足设计出水要求,为了确保出水稳定达标,本工艺设计超低压反渗透处理系统,MBR出水可直接进入反渗透处理系统,反渗透的处理出水将会稳定达标排放。3.4处理效果

渗滤液处理设备在运行期间,平均年处理量约18000立方米,处理后的渗滤液能够全部达标排放。

结束语:

本论文通过对我城市市区生活垃圾处置现状及卫生填埋场中垃圾渗滤液处理现状的分析比较,针对生活垃圾渗滤液的水质特点,提出了厌氧,渗滤液中的碳、氮、磷三种元素的比例。并对其特性、优点及影响因素进行了阐述。