开篇:润墨网以专业的文秘视角,为您筛选了一篇110kV数字化变电站改造方案范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘要:通过对最新数字化变电站技术的探讨和运用,完成对现有110kv变电站进行数字化改造的设计方案。
中图分类号:R187+.7 文献标识码:A
1 概述
1.1 数字化变电站技术简介
数字化变电站是指变电站内一次电气设备实现数字化通信,数字化一次设备和二次智能装置均按照全站统一的标准平台(IEC61850标准)进行数据建模及通信,并在此平台的基础上实现相互之间的互操作性。
数字化变电站应该具有三个关键性的特征:数字化的一次电气设备、全数字化的二次装置和全站统一的标准平台。
数字化的一次电气设备主要包括:电子式电流/电压互感器;智能型断路器/隔离开关;智能型变压器;其它数字化的电气辅助设备。全数字化的二次装置是指二次装置能够实现全数字化的信息传输,二次装置之间、二次装置和站控层设备之间、二次装置和一次电气设备之间均以数字通信方式实现信息传递。如果一、二次设备之间实现数字化通信,变电站内智能装置的数量急剧增加,因此全站智能装置需要采用统一的数据建模及数据通信平台(IEC61850标准),确保实现互操作性。见图1所示。
数字化变电站技术的运用,有利于变电站的安全稳定运行、也有利于变电站降低成本:
(1)新型电子式互感器的运用,避免了传统常规电磁式互感器的磁饱和、铁磁谐振等问题。电子式互感器可以使得一次系统和二次系统完全隔离。
(2)可以大量减少站内二次电缆的数量,简化站内二次接线。
(3)数字化的一次电气设备一般体积偏小,二次电缆被光缆代替又可以节省电缆层和电缆沟的空间,这样有利于变电站空间布置的紧凑化。
(4)站内智能装置基于IEC61850标准建模并通信,有效的缩短设备调试周期,节省人工成本。
1.2 数字化变电站技术发展现况及应用分析
在数字化的一次电气设备方面,智能型断路器/隔离开关、智能型变压器、以及其它数字化的电气辅助设备还处于研究和试验阶段,尚没有较为成熟的产品应用,因此暂不考虑。电子式电流电压互感器处于产品试用推广阶段,国内新上的典型220kV以上数字化变电站已有实际运行的工程实例,但还不具备局面应用。
相对来说,全数字化的二次装置和IEC61850标准的应用更加成熟。国外几大公司均有系列的支持IEC61850的二次产品,而且具备较为丰富的运行经验。国内一线的二次厂家也陆续开发出基于IEC61850的二次产品。因此如果在110kV变电站工程新建及改造中,全站的微机保护装置和自动化装置全部采用IEC61850建模并通信,形成一个有机的系统,按照目前的技术条件是可以实现的。
尽管国内外屡有“数字化变电站”投运的报道,客观地讲,这些实际工程只是初步具备了“数字化变电站”的局部特征。根据目前的技术发展现状,想要在实际工程中应用数字化变电站技术,可以从以下两方面来尝试:1、应用电子式互感器;2、二次设备应用IEC61850建模并通信。
2 设计方案
2.1 过程层
过程层设备包括电子式互感器、合并单元、智能操作箱等设备。
本工程在110kV电压等级推荐使用基于法拉第效应的光学原理电子式互感器;考虑到成本和工程实用综合因素,在10kV电压等级推荐使用基于罗氏线圈或低功率线圈原理的小信号输出电子式互感器;根据产品研发现状,推荐使用分压原理的电子式电压互感器。
智能操作箱实现对一个间隔(含断路器及相关刀闸)的遥信/遥控进行处理:智能操作箱采集间隔内遥信信息,通过GOOSE通信网传送给二次设备;二次设备跳合闸命令通过GOOSE通信网传送给智能操作箱,智能操作箱完成出口跳合闸。
合并单元(MU)主要功能是同步采集电子式CT/PT输出的信号后并按照IEC61850-9-1规定的格式发送给二次设备。
本工程间隔层具体配置如下:
(1)110kV线路纵差保护用的CT、PT均沿用原传统电磁式互感器;110kV线路故障录波、后备保护、测控用的CT可采用纯光学的电子式CT,电流信号经MU数字化后,送相应二次设备;110kV线路电压经MU数字化后,送相应二次设备。
(2)主变高压侧CT采用纯光学的电子式CT,电流信号经MU数字化后,送相应二次设备;主变低压侧采用模拟小信号输出的一体化电子式CT/PT,其输出通过模拟MU数字化后,转发至相应二次设备。
(3)10kV馈线、电容器、站用变间隔,可采用模拟小信号输出的一体化电子式CT/PT,其模拟小信号直接输出至相应开关柜上10kV测控保护装置;10kV分段采用模拟小信号输出、分体式电子式CT、PT,电压电流信号经MU数字化后,送相应二次设备。
(4)110kV线路及变压器间隔配置智能操作箱,就地下放到GIS控制柜;主变低压侧的智能操作箱,放置于开关柜上。
2.2间隔层
本工程间隔层设备基于IEC 61850建模并通信。
(1)110kV线路保护及测控装置:
110kV线路后备保护完成保护和测控功能,装置完全支持IEC 61850,支持GOOSE方式实现间隔层防误闭锁功能,电压电流量采用数字接口输入,于主控室集中组屏。
110kV线路配置光纤纵差保护装置,于主控室集中组屏。但鉴于目前尚无支持IEC61850的光差保护装置,故建议采用传统的光纤纵差保护装置。
(2)主变保护及测控装置:
主变差动保护采用数字接口,完全支持IEC 61850。其开出通过主变GOOSE控制网由智能操作箱实施。
主变除了配置电子式互感器+新型数字接口的主变差动保护外,另外配置一套常规电磁型电流互感器+常规典型配置的主变差动保护,两套装置并列运行。常规差动保护高压侧采用主变套管CT,低压侧采用加装1组10kV保护CT(安装于低压侧进线柜内)的方式实现。常规差动保护装置采用典型设计中的配置。
主变后备保护采用数字接口的主变后备保护装置,完全支持IEC 61850。其开出通过主变GOOSE控制网由智能操作箱实施。
主变高、低压侧设置独立的主变低压侧零序保护装置,完全支持IEC 61850,采用常规模拟量输入的测控保护一体化装置,其开出采用硬接线通过主变智能操作箱实施。
主变本体保护采用智能本体保护装置,完全支持IEC 61850。本体重瓦斯、有载重瓦斯通过电缆接至主控室主变本体保护装置,装置通过GOOSE网实现控制功能。为保证其绝对可靠,考虑将本体重瓦斯、有载重瓦斯加装重动装置,经硬接点至主变双侧智能操作箱实施动作。
主变差动、后备、零序、本体保护装置于主控室集中组屏。
所有主变差动/后备/零序/本体保护装置、双侧智能操作箱、主变智能操作箱等,组成独立的、面向过程层的、基于GOOSE机制的主变控制网(双网架构),以实现相应遥信、遥测和保护控制,并实现与其它应用交互信息。
主变测控装置采用完全支持IEC 61850的测控装置。实现轻瓦斯、温度(油温及绕组)、压力释放、油位、超温报警、有载档位中性点地刀等其它非电量信号的硬接入及测量,并上报后台和主控单元。此装置就地下放主变旁安装。
主变高压侧零序保护通过接收由集控站/调度发出的主变运行方式改变遥控令(中性点地刀投切令)及中性点地刀位置,决定投零序或间隙保护。
主变双侧电流、电压、功率等模拟量测量,由主变高、低后备装置完成。
主变高、低侧的遥控,可由主变高、低后备装置完成。
(3)10kV 测控保护装置:
10kV自切装置按照分段来配置,自切逻辑遵循典型设计。自切出口用GOOSE控制网实现。电压电流采用值和开入信息用IEC61850通信实现。
10kV馈线、电容器、分段间隔采用测控保护一体化装置,完全支持IEC 61850,按照点对点面向间隔配置。采用下放10kV继电小室于开关柜上分散布置。低周、低压减载功能由10kV馈线保护测控合一装置完成。
(4)计量部分:
110kV进线、主变高低压侧采用支持数字输入的电子式多功能电能表,在主控室集中组屏。
10kV馈线和站用变计量功能由测控保护装置完成。
(5)故障录波器:
采用新型数字式故障录波器,110kV线路、主变高低压侧电流电压值由相应MU以IEC 61850-9-1格式传送至故障录波器,遥信量由二次装置以GOOSE报文传送至故障录波器。
(6)小电流接地选线设备:
小电流接地选线功能由10kV测控保护装置和计算机监控后台配合实现,后台可集中显示所有上送的接地信息,并进行分析、诊断与排序,供用户判断试跳接地线路。
2.3 站控层
根据本站规模,配置如下:
配置站控层主机/操作员工作站、工程师工作站各一台;
配置远动工作站一台,实现向调度或集控中心进行数据的远传;
配置公用接口单元、公用测控单元各一台,用于接入其他非IEC61850装置(如直流、消防、视频等)。
后台监控系统采用NS3100计算机监控系统(Win版)。NS3100计算机监控系统参加了由国家电网公司组织的IEC 61850互操作试验,与国内主流厂家以及国外知名厂家的设备实现了互连互通、及互操作试验。同时,NS3100计算机监控系统集成“五防”系统。
3 其它
3.1 站内网络
站控层网络:采用总线型双以太网,构成站控层网络。
对时网:实现全站IED对时。
同步采样网:实现全站分布式采样同步。
主变控制网:全站主变相关IED及相关智能操作箱组成一个主变控制GOOSE网(双网结构)。
3.2 网络设备
对于站控层网络,采用常规工业级工作组网络交换设备,构成站控层双以太网;对于10kV系统,采用常规工业级工作组网络交换设备,构成10kV继电小室面向站控层信息集总,通过光纤接入站控层;对于GOOSE控制网,采用符合IEC61850的工业级网络交换设备构成针对主变的控制网。
对网络交换机的要求如下:数字化变电站的工业级以太网交换机应具备QOS、优先级、组播等功能,开放SNMP服务,电磁兼容性指标必须满足较高的IEC标准(如快速瞬变4级等),有较宽的工作温度范围(如-25℃到55℃),支持直流供电,并且是无风扇设计,应具备告警、按端口配置流量功能。
对于构成GOOSE控制网的工业级网络交换设备,应能支持GOOSE技术。
3.3 公用接口
本工程配置公用接口装置,接入其他非IEC61850装置(如直流、消防、视频等)。
4 结论
根据110kV变电站数字化改造方案,在本辖区选择1座110kV变电站,进行了数字化改造。实践证明,该方案对于传统110kV变电站的数字化改造升级是比较可行的,相对改造周期及成本费用均较低,在现阶段是可以推广的。
[参考文献]
[1] 丁书文,史志鸿.数字化变电站的几个关键技术问题[J].继电器,2008(10).
[2] 朱永利,邸剑,翟学明.数字化变电站中的通信网关[J].电力系统自动化,2009(4).
[3] 马临超,倪艳荣,齐山成.数字化变电站浅析[J].河南机电高等专科学校学报,2009(3).
[4] 高翔,张沛超.数字化变电站的主要特征和关键技术[J].电网技术2006(23).
[5] 永保才.浅论数字化变电站自动化系统[J].云南电力技术,2007(8).