首页 > 范文大全 > 正文

试论半导体材料及发展趋势

开篇:润墨网以专业的文秘视角,为您筛选了一篇试论半导体材料及发展趋势范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:自然界的物质、材料按导电能力大小可分为导体、半导体、和绝缘体三大类。本文主要介绍了几种半导体材料,并分析了其发展趋势

关键词:半导体材料 发展趋势

中图分类号:O47文献标识码: A 文章编号:

半导体信息功能材料和器件是信息科学技术发展的物质基础和先导。半导体材料是最重要最有影响的功能材料之一,它在微电子领域具有独占的地位,同时又是光电子领域的主要材料。半导体技术的迅速发展,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

一、几种主流的半导体材料简介

(一)半导体硅材料

硅是当前微电子技术的基础材料,预计到本世纪中叶都不会改变。从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离和SIMOX材料等也发展很快。理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

(二)半导体超晶格、量子阱材料

以GaAs和InP为基的晶格匹配和应变补偿的超晶格、量子阱材料已发展得相当成熟,并成功地用来制造超高速、超高频微电子器件和单片集成电路。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英、法、美、日等尖端科技公司等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(三)光子晶体半导体材料及其发展趋势

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。有科学家提出了全息光栅光刻的方法来制造三维光子晶体,并取得了进展。

二、半导体材料未来的发展趋势

随着信息载体从电子向光电子和光子的转换步伐的加快,半导体光电信息功能材料也已由体材料发展到薄层、超薄层微结构材料,并正向集材料、器件、电路为一体的功能系统集成芯片材料和纳米结构材料方向发展。材料生长制备的控制精度也将向单原子、单分子尺度发展。从材料体系上看,除硅和硅基材料作为当代微电子技术的基础在2l世纪中叶不会改变外,化合物半导体微结构材料以其优异的光电性质在高速、低功耗、低噪音器件和电路,特别是光电子器件、光电集成和光子集成等方面发挥着越来越重要的作用;与此同时,近年来硅和GaAs,InP等Ⅲ一V族化合物混合集成技术取得的重大进展,使人们看到了硅基混合光电集成的曙光。有机半导体发光材料以其低廉的成本和良好的柔性,已成为全色高亮度发光材料研发的另一个重要发展方向,预计会在新一代平板显示材料中占有一席之地。GaN基紫、蓝、绿异质结构发光材料和器件的研制成功,不仅将使光存储密度成倍增长,而更重要的是它将会引起照明光源的革命,经济效益巨大。航空、航天以及国防建设的要求推动了宽带隙、高温微电子材料和中远红外激光材料的发展。探索低维结构材料的量子效应及其在未来纳米电子学和纳米光子学方面的应用,特别是基于单光子光源的量子通信技术,基于固态量子比特的量子计算和无机/有机/生命体复合功能结构材料与器件发展应用,已成为材料科学目前最活跃的研究领域,并极有可能触发新的技术革命,从而彻底改变人类的生产和生活方式。另外,从半导体异质结构材料生长制备技术发展的角度看,已由晶格匹配、小失配材料体系向应变补偿和大失配异质结构材料体系发展。如何避免和消除大失配异质结构材料体系在界面处存在的大量位错和缺陷,是目前材料制备中迫切要解决的关键问题之一,它的解决将为材料科学工作者提供一个广阔的创新空间。