开篇:润墨网以专业的文秘视角,为您筛选了一篇精心设计练习促进学生数学思维能力的发展范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
霍金军,天津市滨海新区汉沽体育场小学教师,高级教师。获得全国课改实验优秀教师、滨海新区优秀教师标兵等荣誉称号,获得天津市五一劳动奖章。在天津市小学数学课改实验课评比中获得一等奖。获得全国小学数学实验教材第一届教学改革观摩交流会录像课评比一等奖、“创新杯”全国教学艺术大赛讲课一等奖。教学管理理念:在学校管理工作中,能够用结构解决的问题就不要用制度来解决。
数学教育最本质的内容是思维的训练与发展,特别是在小学数学教学中,教师要善于引导、激活、发展学生的思维,培养学生思维的能力,改善学生思维的品质。而培养学生思维能力的有效方法是通过解题的练习来实现。因此,设计好练习就成为能否促进学生思维能力发展的重要一环。
一、端正对练习目的的认识――练习是推动学生数学认知结构持续发展的有效载体
练习的目的不仅仅是巩固知识训练技能,更重要的是运用练习推动学生数学认知结构的持续发展。按照当代认知心理学的观点,学生数学认知结构的发展是随着学习层次的深入而获得的。学生利用自己已有的数学认知结构积极主动地与新的数学知识进行相互作用,将新的数学知识同化到已有数学认知结构中,从而丰富了学生的数学认知结构,推动数学认知结构的持续发展。
在复习加法、乘法运算定律所表示的意义时,学生大多通过文字或者字母的形式来解读对定律的理解,也会有一部分学生通过列举实例的方式来说明。这些重复再现以往的知识结构,学生感觉没有兴趣。怎样才能有效激活学生的思维,促使其思维进一步发展呢?让我们一起来看看“加法、乘法运算定律”复习课的练习设计。
练习设计:
1.回忆学过的那些图形及它们的测量方法。
2.选择合适的图形来表达不同的运算定律。
学习心理学关于知识掌握过程的研究表明,知识的掌握过程包括增生、重建和融会贯通三个阶段。这样开放的设计是站在学生数学学习心理的高度,思考通过习题的练习可能对学生发展产生的促进作用,成功地对习题进行分解重组。学生用学过的图形及测量方法,将运算定律与图形联系起来,他们在筛选、比较、验证的过程中重新构建与完善自己的知识体系,展开高水平的思维活动,达到对知识的深层次理解,并能有效地对知识进行重建和融会贯通。这是有效数学课堂的追求,也是促进学生思维发展的一个有效途径。
作为数学教师,应该立足于课堂而高于课堂,站在一定的高度,以更开阔的视野为学生的终身学习着想,力求在简单的习题练习中渗透更多理性的东西,那样,我们的课堂将会更加精彩。
二、端正对教师角色的认识――>习题的分析专家和信息的有效加工者
教材为学生的学习活动提供了基本线索,是实现课程目标、实施教学的重要资源。教师在分析教材的时候往往是重例题的分析,而且基本能分析到位,并能在课堂教学中体现出来,但是,往往普遍轻视习题部分的品读。因此,真正领会习题的设计意图,要善于选择有价值的信息,重组练习材料,创造性地发挥习题的功能,以达到精简有效训练目的,这也是一名数学教师应该具备的专业素养。
在学习长方体和正方体的体积之后,课本上有这样一道习题:一个长方体包装盒,从里面量长28cm,宽20cm,体积为11.76din3。爸爸想用它包装一件长25cm、宽16cm、高18cm的玻璃器皿,是否可以装得下?
这道习题很多教师的处理方式就是学生能够做到包装盒与玻璃器皿的长、宽、高一一对应比较,得出能装下就可以了。真的是这样吗?翻阅教参,教参上这样一句话引起我的注意:只要包装盒的高大于16em就能装下。学生对这句话不易理解,由此对这道题目进行了两次变式。
第一次将包装盒的体积改为8.4din3。学生做后发现包装盒的高度小于玻璃器皿的高度,不能装下。学生依然采用包装盒与玻璃器皿的长、宽、高一一对应的方法比较。
第二次将包装盒的体积改为9.52dm3。学生采用上述方法仍然得出不能装下的结论。
“真的不能装下吗?”学生在质疑中陷入了思考,在思考中发现了问题:包装盒的高度是17cm,虽然小于玻璃器皿的高度,但是将玻璃器皿翻转一下,将包装盒的高度17cm与玻璃器皿的宽16cm比较,这样就能装下了。
引导学生再次比较三道题目,学生也就切实明白了“只要包装盒的高大于16cm就能装下”这句话-的含义了。
在练习课教学中,我们需要改变就题论题的做法,通过对习题价值的研究,放大习题功能,为提高学生的数学思维能力创造更多的机会,我想这就是习题的价值所在。正如思想家罗素所说:教育是在教师的指导下,学生才学会自主思考。
三、改变对学生角色的认识――让学生从“操作工”转变为“研究者”
新课程理念指导下的数学课堂,已经在唤醒学生主体意识上跨了一大步,但是在开展练习教学的时候,还是难以摆脱机械式操作的困境。
学校的一次毕业班模拟监测,有一道选择题:
一根铁丝,第一次剪去它的5/9,第二次剪去5/9米,两次所剪的长度相比:(
)
A.第一次剪去的多B.第二次剪去的多C.相等
D.不一定
正确的答案应该是A,但是批改后发现,有很多学生选择了D,特别是那些平时学习成绩优良的学生都毫无疑惑地选择了D。一问原因,说是因为以前做过类似的题目,都是这个答案。
确实,我们在平时的练习和复习中,经常性地出现这种类似的习题。所以,当学生在看到类似的语言描述时,就自然在头脑中形成条件反射,不经过思考分析选择了他认为正确的答案。大量的练习换来了什么,又缺乏了什么?回答是可能得到了熟练的技能,但是同时可能养成了学生的一种惯性思维,形成了消极的条件反射,磨灭了学生谨慎的思维习惯,数学思维能力、思维的批判能力也因此削减。
这样一个现象,说明我们在设计练习之时,应该做到着眼于学生能力的提高。让学生从“机械操作工”的角色转换为“智能研究者”,该让学生操作的就不妨让学生再操作一下,唤起他们的记忆;该讨论的时候不妨就让学生争辩一下,让学生的思维在碰撞中明理。还可以对习题进行适当改组,给他们设置一些陷阱,让学生在顿悟中感受数学的灵动,在思辨中提升思维能力。
专家点评:
小学数学是培养学生思维品质的基础课程。教学中,教师要善于引导、激活、发展学生的思维,培养学生思维的能力,改善学生思维的品质,而培养学生思维能力的有效方法是通过解题的练习来实现。霍金军老师积极探寻开展思维训练的方法与途径,着眼于端正对练习目的的认识,首先明确练习是推动学生数学认知结构持续发展的有效载体,强调了练习设计的重要性。同时,以新课程理念为指导思想,将教师角色和学生角色的认识又进一步向实践层面深挖推进。文中提出教师不仅是习题的分析专家更要做好信息的有效加工者,要为学生搭建有效的思维发展的阶梯;又分析了让学生从“操作工”转变为“研究者”的重要意义,强调让学生在实践中感悟提升,切实提高学生的思维能力和数学素质。作为一名理论水平高、专业素养深、责任意识重的教学领导能够长期立足于一线课堂进行深入思考,是推动和提升学校教师专业发展的宝贵财富,是学生素质培养的不竭动力。