首页 > 范文大全 > 正文

基于遗传算法优化神经网络的变压器故障诊断的研究

开篇:润墨网以专业的文秘视角,为您筛选了一篇基于遗传算法优化神经网络的变压器故障诊断的研究范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

【摘 要】变压器是力系统的重要组成部分,一旦发生故障将影响整个系统的正常运行。因此研究变压品故障诊断技术对于维持系统稳定性具有重要意义。本文以BP算法和GA算法为研究对象,两者同时作为变压品故障诊断技术,各自具有不同的优点或缺陷,笔者意在将两者的优点结合起来,来改善故障诊断的精度和速度。

【关键词】BP神经网络;遗传算法;变压器;故障诊断

1 引言

变压器作为电力系统重要的变电设备,其运行状态直接影响到供电的可靠性和整个系统的正常运行。一旦发生事故,将对电力系统和终端用户造成严重的影响。因此研究变压器故障诊断技术,对电力系统安全运行有着重要的现实意义。

对变压器油中溶解气体进行色谱分析(DGA)是变压器内部故障诊断的一种重要的手段。基于此技术,采用具有高度的非线性映射以及自组织、自学习能力的人工神经网络,现阶段在进行故障诊断时多采用BP神经网络。BP算法是基于梯度的方法,容易陷入局部极小值,且收敛速度慢。GA遗传算法的发展为我们提供了一个全局的、稳健的搜索优化方法,本文充分利用GA具有不受函数可微与连续的制约,并且能达到全局最优的特点,由GA寻找最优的BP网络权值与相应节点的阈值,并加入动量因子,此方法弥补了传统优化方法的不足,极大地改善了BP网络的性能。

2 BP神经网络及遗传算法原理

2.1 BP神经网络的基本原理

BP神经网络是一种利用反向传播训练算法的前馈型神经网络,BP学习算法基本原理是梯度最速下降法,中心思想是调整权值使网络总误差最小,即采用梯度搜索技术,以使其网络的实际输出值与期望输出值的误差均方值为最小。

BP学习算法包括前向传播和误差反向传播两个学习阶段。当给定网络的一个输入模式时,输入信号经隐层逐层处理后传到输出层,并由输出层处理后产生一个输出模式,称为前向传播;当输出响应与期望的输出模式有误差时,则转入误差反向传播。即将误差值沿原来的连接通路逐层反向传播直至输入层,并修正各层连接权值。对于给定的一组训练模式,不断地重复前向传播和误差反向传播的过程,通过沿途修改各层神经元间的连接权和神经元阈值使得误差达到最小。当各个训练模式都满足要求时,就说BP网络已学习好。BP神经网络模型的基本结构如图1。

2.2 附加动量的BP神经网络

传统的BP神经网络训练在修正权值时,是按着k时刻的负梯度方式进行修正,而忽略了之前积累的经验,导致权值的学习过程发生振荡,收敛缓慢。因此提出加入动量因子a,此时k+1时刻的权值为:

附加动量法总是力图使同一梯度方向上的修正量增加。这种方法加速了收敛速度,并在一定程度上减小了陷入局部极小的概率。

2.3 GA遗传算法的基本原理

GA是模拟自然界优胜劣汰的进化现象,把搜索空间映射为遗传空间,把可能的解编码成一个向量(染色体),向量的每个元素称为基因。通过不断计算各染色体的适应值,选择最好的染色体,获得最优解。

首先把问题解用遗传表示出来,在对种群中的个体进行逐个解码并根据目标函数计算其适应值。根据适应值的大小而决定某些个体是否得以存活的操作,把适应值高的个体取出复制再生,再将两个个体的某些部分互换并重新组合而成新的个体,经过交叉后随机地改变个体的某些基因位从而产生新的染色体。这样的过程反复循环,经过若干代后,算法就收敛到一个最优的个体,问题最终获得全局最优解。GA流程图如图2所示:

3 GA优化BP神经网络的变压器故障诊断模型设计

GA-BP算法主要思想是:先利用神经网络试探出最好的网络的隐层节点数,再利用遗传算法在整体寻优的特点将网络的权值优化到一个较小的范围,进而用BP算法继续优化。

3.1 BP网络的建立

(1)输入模式的确定

本文为了充分利用在线监测中的特征气体而又不使输入量过大,特取C2H2/C2H4、C2H4/C2H6、CH4/H2的比值归一后作为输入矢量。

(2)输出模式的确定

本文对输出层采用正常、低温过热、中温过热、高温过热、局部放电、低能放电、高能放电共7个神经元。输出值最大为l,数值越大则表明该类型的故障的可能性和严重程度也越大,如表2.1:

(3)隐含层神经元数确定

本文参考关于隐含层神经元数的理论研究和经验公式,获得理论值为5~15。再利用matlab 软件,通过试凑法对网络进行训练,将隐层节点设置为6、8、10、12、14,将其输入计算机,在相同训练条件下进行训练,得知隐层节点数为12时网络收敛性能好,收敛时间较短。故选节点数为12。

综上所述,本文构建一个输入层为3,隐含层为12,输出层为7的BP神经网络。

3.2 GA对BP网络进行优化

(1)初始化种群P、以及权值、阈值初始化;在编码中,采用实数进行编码,本文初始种群取30;

(2)计算每一个个体评价函数,并将其排序;可按下式概率值选择网络个体:

其中 i为染色体个数,k为输出层节点数,YK为训练值,P为学习样本数,T为期望目标值;

(3)进行选择复制、交叉、变异遗传操作;

(4)将新个体插入到种群P中,并计算新个体的评价函数;

(5)计算BP的误差平方和,若达到预定值则进行BP神经网络的训练,否则重复进行遗传操作;

(6)结束GA操作,以GA遗传出的优化初值作为初始权值,运用BP神经网络进行训练,计算其误差,并不断修改其权值和阈值,直至满足精度要求,此时说明BP网络已经训练好,保存网络权值和阈值。

4 故障诊断系统的仿真

本文选取了具有代表性的30组作为训练样本, 在建立的GA-BP变压器故障诊断网络中输入样本进行训练,其遗传算法适应度曲线、误差平方和曲线和GA-BP的训练目标曲线图分别见图3、图4和图5。

从图中可以看出,适应度较高的个体被遗传了下来,适应度较低的则被淘汰;GA进行了150代的遗传操作达到了目标值;GA-BP算法进行了106步左右就收敛到指定精度0.0005。由此看出,此GA优化BP建立的变压器故障诊断模型的收敛精度和收敛速度都比较高。

采用实际检测到的10组电力变压器故障实例(表2)来验证网络性能,神经网络诊断结果和实际故障结果的比较,如表3所示:

由表3可见,基于遗传算法优化BP神经网络的变压器故障诊断系统在故障诊断中达到了很高的准确率,能较好地满足变压器故障诊断的要求,极大的提高了诊断的可靠性和准确性。

5 结束语

文中将遗传算法与BP网络相结合,在DGA的基础上设计了适用于变压器故障诊断的3-12-7结构的BP神经网络。先对网络的权值阈值进行GA算法处理,并在传统的BP算法中加入动量因子,通过MATLAB编程实现了GA优化BP网络。通过仿真分析可知GA优化BP网络收敛性能的提高改善了BP网络的学习效率,并在下一步的诊断工作中体现其高准确率,推广了此优化网络在变压器故障诊断的实用性。

参考文献:

[1]张绪锦,谭剑波,韩江洪.基于BP神经网络的故障诊断方法[J].系统工程理论与实践,2002(6).

[2]王少芳,蔡金锭.GA―BP混合算法在变压器色谱诊断法中的应用[J].高电压技术,2003(7).

[3]郑高,戴玉松.人工智能方法在变压器故障诊断中的应用[J].四川工业学院报,2004 (5).

[4]李国勇.智能控制机器MATLAB实现[M].电子工业出版社,2005.

[5]徐志钮,律方成.多神经网络方法在变压器油色谱故障诊断中的应用[J].高压电器,2005(3).

作者简介:

盛玉祝(1976―),男,工程师,1994年毕业于安徽省煤炭工业学校,主要从事煤矿供电工作。