首页 > 范文大全 > 正文

小檗碱作用靶点及其吸收特点

开篇:润墨网以专业的文秘视角,为您筛选了一篇小檗碱作用靶点及其吸收特点范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

[摘要] 随着研究的不断深入,小檗碱的多种药理作用不断被发现。随之而来的是如何针对小檗碱的这些新的药理作用来合理用药。由于小檗碱具有一定的心肌毒性、且其口服吸收较差,因此导致了在如何提高生物利用度与控制其可能产生的毒性之间的矛盾。同时一些新的用途如调血脂、降血糖以及防治神经退行性病变等都需要长期给药,从而形成了长期口服与对肠道菌群失调及其对机体其他生理功能影响可能产生潜在的风险之间的矛盾。该文在阐明小檗碱作用靶点及其相关药学特性的基础上,就这方面议题进行了综合讨论分析。最后提出建议:长期口服给药对机体尤其是肠道菌群的影响尚需进一步考察;通过改变制剂提高口服药物的吸收率时应考虑由此带来的风险;对于药物浓度需求较高的治疗用药(如肿瘤),靶向给药值得考虑。

[关键词] 小檗碱;药理;吸收;毒性;应用

Berberine action targets and its absorption behavior:

how to use old drug for new mechanisms

YUAN Zhiyi, WANG Yugang, CHAI Yushuang, HU Jun, JIANG Jingfei, YAN Xiaojin, DU Lijun*

(Laboratory of Molecular Pharmacology and Pharmaceutical Sciences,

School of Life Sciences, Tsinghua University, Beijing 100084, China)

[Abstract] A variety of pharmacological effects of berberine (BBR) are constantly being discovered with the deepening of BBR research What followed is how to rationally use the drug according to these new pharmacological effects Because of some cardiac toxicity and poor oral absorption, conflicts may arise between improving the bioavailability and controlling the toxicity of BBR Meanwhile some new therapeutic uses of BBR, such as hypolipidemia, hypoglycemia as well as prevention and treatment of neurodegenerative diseases, need longtermoral administration, thereby may lead to alteration of intestinal flora and potentially affect body′s other physiological functions Based on the stated targets of BBR and related pharmaceutical properties, comprehensive analysis of these issues was conducted in this study Some suggestions were presented below:the effect of longterm oral administration on body function, especially the intestinal flora, needs to be further investigated; risks shall be considered in changing the composition of the formulation to improve the absorption rate of oral administration; for the medication with higher concentration demand (such as anticancer), targeted drugdelivery is worthy to be considered

[Key words] berberine; action pharmacology; absorption; toxicity; application

doi:10.4268/cjcmm20161231

小檗碱又称黄连素(berberine, BBR),它分离纯化于中药黄连,并存在于多种植物中。我国在20世纪70年代实现了BBR的全合成[12]。BBR曾是临床治疗消化道感染性疾病的一线药物。进入21世纪,随着分子生物技术的发展以及研究水平的不断提高,人们相继发现了BBR多种多样的药理作用,从而激发了对它的兴趣。BBR几乎对所观察的靶点均有不同的作用。归纳起来主要涉及到高血糖、高血脂、肿瘤、神经退行性疾病等。但是BBR是否有一个基础的作用靶点,是否有一个基本的使用范围。这样一个老药如何在新形势下更好的使用。对此进行探讨,将有助于深化对BBR认识以及临床合理使用,同时也有助于那些以含BBR为主的中药的临床使用。

1 小檗碱的药理作用

11 胃肠系统 早期的研究主要集中在胃肠道感染性疾病方面。国外主要集中在治疗霍乱所引起的腹泻[34]。国内则主要集中在痢疾, 同时还涉及到呼吸道感染、慢性肝炎、肺结核等方面[58]。并有多篇包括临床规模性实验方面的,很明显BBR已用于临床治疗[910]。从结果来看,BBR的确起到了一定的防治作用。同时在研究探讨病原微生物方面也涉及到其他病菌,例如大肠杆菌、耐药金黄色葡萄球菌等[11]。BBR可以抑制肠黏膜液体分泌,且与胃肠肽分泌和水孔蛋白AQP4表达有关[1213]。同时BBR对胃肠平滑肌收缩具有抑制作用,主要与平滑肌的钙离子通道和MLC,MLCP表达下调有关[1416]。人们利用BBR这种对平滑肌的调控作用尝试着用来治疗肠易激综合征[17]。BBR对胃肠黏膜屏障具有一定的保护作用,可以防治过量饮酒及其他毒素对胃肠黏膜造成的损伤[1819]。近年来的研究发现,BBR可以调节肠道菌群,从而影响肠道脂类吸收,这一结果将对长期口服给药带来新的研究命题[20]。

12 心血管系统 早期研究报道了BBR作用于心脏和血管。国内最早有BBR降血压的临床报道[21]。早期研究认为BBR可以调控心率,舒张血管平滑肌,因此可以用于心律不齐、高血压及其充血性心衰等病症的治疗[2225]。BBR的这种作用主要与抑制钾离子通道有关[2629]。之后又表明BBR对钙离子通道也有抑制作用[3031]。而对于血管的调控作用也是与血管平滑肌细胞的钙离子通道及其α2肾上腺素能受体有关[32]。认为BBR对心血管功能总体表现出负性效应[33]。这种抑制离子通道的作用也为后续BBR的应用起到了潜在地限制作用。在BBR注射给药时表现出了毒副作用。例如国内早期的有关黄连素注射液致急性心衰死亡的报道,提示此与离子通道阻滞有关[3436]。由于上述BBR的副效应,限制了BBR在心血管系统的应用。

13 降血糖 早在20世纪80年代就报道BBR具有降血糖作用[3738]。之后的研究主要从葡萄糖吸收,胰岛素分泌,胰岛素敏感性及其糖代谢等方面进行[3942]。涉及的调控因子有SREBPs,LXRα,PPARα,ERK, p38 MAPK,JNK,葡萄糖转运蛋白家族GLUs,AMPK,胰岛素样生长因子IGF等[4352]。最近人们又发现BBR因其所具有的抗氧化、抗炎作用而对于糖尿病并发症,如肾损伤、微血管损伤、学习记忆障碍等表现出一定的防治作用[5356],从而进一步扩大了BBR在防治糖尿病及其并发症方面的应用。

14 抗炎免疫 BBR具有确实的抗炎作用。其中较为明确的作用因子有IL1β,IL6,TNFα,NFκB,COX2以及模式识别受体TLRs等[5760]。BBR对炎性因子的抑制作用的研究也扩展到了其相关疾病如动脉粥样硬化、高血糖、肥胖、脑缺血再灌损伤等病理生理过程中。

15 神经精神系统 BBR对神经系统的作用较早见于20世纪70年代,主要表现在镇静作用[6162]。到目前为止已经涉及到了脑缺血再灌损伤、早老性痴呆、帕金森症、抑郁症、焦虑症、亨廷顿氏病、癫痫或惊厥等[6372]。其中对脑缺血再灌损伤的研究较为深入,基本证明了BBR的作用与其抗氧化、抑制细胞周期、抗凋亡、上调PI3K/AKT通路等相关[7375]。研究表明BBR对脑缺血再灌损伤的作用具有缺血和再灌的不同时相性,即缺血时的神经元周期抑制的“冬眠时相”(phase of hibernation)和再灌时细胞生存修复的“复苏时相”(phase of anabiosis)[76]。这一结果也为多家实验室所证实[7778]。BBR对早老性痴呆作用则主要表现在抑制相关分泌酶、减少相关淀粉样蛋白对神经元损害等方面,而这些也与其抗炎有关[7980]。BBR对抑郁症的作用则主要是从整体动物筛选,其机制研究较为滞后。主要与5HT和阳离子转运体OCTs有关[8182]。从BBR的总体抑制效应来看,即使是用于抑郁症,也较为适用于早期的燥狂性抑郁症[83]。BBR的镇惊作用可能与抑制兴奋性氨基酸GABA释放有关[84]。目前BBR对帕金森症作用的研究只是观察到BBR对于调节多巴胺神经元及其多巴胺含量有影响[8586],更多的实验还有待于完成。

16 调血脂减肥 21世纪初人们开始关注到BBR具有一定的调血脂作用[87],随后的研究日益深入。由于以高血糖和高血脂为主要核心的“代谢综合征”的提出,以及全球性高血脂肥胖患者的增多,BBR的调血脂研究发展很快,并且这种实验室研究成果很快向临床医学转化。到目前为止,BBR调血脂作用的分子机制主要与升高低密度脂蛋白受体(LDLR)表达相关[8889]。随后的研究也表明BBR除LDLR以外,还通过其他诸如因子PPARs,JNK,AMPK等调节血脂[9093]。并且新的作用靶点不断被发现报道。而与高血脂密切相关的肥胖的研究也表明了BBR减肥的可能性[9495]。其作用主要与调控脂肪酸代谢及其线粒体UCP1等相关因子表达相关[9697]。

17 抗肿瘤 早在20世纪80年代人们就发现BBR体外对癌细胞具有一定的抑制作用[98]。进入21世纪,BBR的抑瘤效应更受到人们重视。到目前为止,BBR的抑瘤谱涉及到肺癌、肝癌、胶质瘤、乳腺癌、前列腺癌、结肠癌等[99104]。目前较为一致的结果是BBR使肿瘤细胞停滞于G0/G1或者是G2/M期,这种使之停滞于G0/G1还是G2/M期的不同具有剂量依赖性[105107]。其作用靶点较多的报道涉及到p53caspase 3,PTEN/AKT,STAT3,PI3K/Akt,JNK/p38 MAPK,Wnt/βcatenin等信号通路。值得注意的是,不同组织源瘤细胞的有效药物浓度相差较大,几倍甚至几十倍(5~400 μmol・L-1)[100,108]。造成这种浓度差异的原因主要与瘤细胞膜逆转运蛋白的表达的差异性有关,由此造成肿瘤细胞内BBR浓度的不一,最终产生差异性抑瘤效应。

2 小檗碱作用的靶点

从蛋白水平来看,BBR作用的靶点很多。归纳起来比较确定的有NFκB,PI3K/AKT,STAT3,mTOR,COX2等,BBR其他作用靶点归纳见表1。在如此众多蛋白靶点背后,BBR是否有一个基础的作用靶点或者说是作用位点(targeting sites),是人们一直考虑的问题。早在20世纪60年代有化学家就发现BBR能够与DNA结合[109]。随后的研究也表明BBR对于脱氧胸腺嘧啶(thymine,T)和脱氧腺嘌呤(adenine,A)有偏好性。BBR可以以氢键形式插入到TA互补碱基的氢键中,形成阻碍(blocking),见图1[110113]。继之又发现BBR与RNA的poly(A)和尿嘧啶(uracil,U)具有偏好性[114116]。

笔者在探讨BBR的基础作用靶点时,将BBR对核酸的作用引入到生命体系中进行研究观察,发现BBR在生命体系中基因转录区的TATAbox具有较高的亲和力,这种亲和力所导致的直接结果就是该基因的转录受到抑制[117]。同时BBR对于转录生成的mRNA的尾部poly(A)[poly(A) tail]具有较强亲和力,这一作用可以增强mRNA的稳定性,进而使其翻译蛋白保持在高水平,这一结果直接导致了相应蛋白表达的持续上调[118]。根据基因表达的中心法则,BBR的这种DNA和RNA作用具有时空差异性。这种差异性也是BBR所表现出多种靶点的根本原因,其结果是最终使BBR作用的不同靶点蛋白表达下调或上调,表现出多种多样的生物活性[119],见图2。这一发现将有可能从根本上阐明BBR作用蛋白靶点的多样性。该结果还有待于更多研究的检验。

3 小檗碱的毒性

BBR长期以来未表现出明显的药物不良反应,其主要原因就是因为BBR一直为用于治疗肠道感染的局部用药。BBR治疗肠道感染的关键在于局部肠道的有效浓度,同时这种治疗的服药周期也不太长(约1~2周)。因此,有关BBR的毒理学研究报道不多。而BBR诸如调血脂降血糖等新的用途,则需要提高生物利用度并延长给药周期。这对于以往认为较安全的BBR提出了新的命题。新近的研究表明BBR可以抑制hERG,从而具有潜在的影响心律的风险[120]。同时还可以通过影响线粒体呼吸链及其NMDA受体而对神经细胞产生毒性[121]。BBR对于胆红素对神经元毒性具有协同效应,提示婴幼儿及新生儿母亲慎用BBR[122]。BBR急性毒性实验表明,灌胃给药出现死亡小鼠的剂量为832 g・kg-1;而静脉给药的LD50为904 mg・kg-1。可见口服给药的生物利用度与静脉给药有较大差异。值得注意的是,无论不同途径给药的剂量差异有多大,BBR出现小鼠死亡时的血药浓度则相差不大,约为05~07 mg・L-1 [123]。由此提示,影响BBR毒性的是其血液药物浓度。BBR给大鼠母鼠灌胃(1 g・kg-1)可以明显抑制胎鼠的体重,表现出一定的生殖毒性[124]。但灌胃给药的BBR长期毒性(90 d,最大剂量05 g・kg-1・d-1)实验结果表明,除受试大鼠出现腹泻外,未显示出明显毒性[125]。

4 小檗碱的吸收特点

一直以来,BBR都是作用治疗肠道感染而为临床所用。近年的研究表明,人类肠道细胞不仅可以通过合成内毒素影响全身,引发病理反应;同时也可以通过细胞影响或生成一些代谢产物进而间接的干预机体的生理功能[126128],例如糖脂代谢、神经调控、抗衰老等[129130]。作为一个主要作用于肠道的中药小分子,对肠道致病菌抑制的同时,势必会对肠道菌群产生影响,进而以此影响机体的生理功能。尤其是长期给药更是如此。己有的几篇文章均表明BBR可以通过干预肠道菌群影响糖脂吸收[131133]。至于肠道菌群及其肠黏膜屏障对BBR吸收的影响的研究报道较少,有待于进一步加强。

早期研究中人们就发现BBR口服吸收较差,生物利用度较低。口服BBR后,约86%的BBR经肠道排泄而不被吸收[134]。口服生物利用度较低的主要原因就是肠黏膜上皮细胞膜的逆转运蛋白(pglycoprotein)[135]。逆转运蛋白可以将肠黏膜上皮细胞吸收的BBR重新排除胞外,进而减少机体对BBR的吸收。因此,从这一点来说BBR长期以来的定位为口服给药是最安全的给药途径。BBR较低的吸收率,为什么会表现出一定的活性?通过研究发现其相关的可能原因在于:①机体所需要的BBR的有效浓度较低;②BBR对细胞膜逆转运蛋白表达有调控作用,抑制逆转运蛋白表达可以使BBR保持较高的胞内浓度,由此而显示出BBR具有一定的胞内富集效应[136];③BBR在体内可以转化为具有相同活性的代谢产物,以保持持续的活性[137];④新近的研究表明,BBR可以通过调控肠内具有不同功能的菌群生长,间接影响肠内糖脂成分的吸收,最终影响体内糖脂代谢,并由此起到间接的降血糖调血脂作用[138]。因此BBR口服尽管吸收较低,但通过上述措施基本保证了有效浓度及其产生的相关药效。此外,针对逆转运蛋白的特点,有人通过抑制逆转运蛋白来提高BBR生物利用度[139],例如近年来研究较多的纳米包裹技术等[140141]。BBR组织分布较为广泛,如肝、肾、肌肉、肺、脑、心、胰脏、脂肪等[142]。

5 老药如何新用

探讨影响BBR使用的原因时不得不考虑其吸收特性。多年来有许多文章发表,其中对于BBR新发现的多种活性在口服给药时能否达到有效浓度,是人们一直关注的问题。另外BBR的长期给药是否产生其他副作用等,都是这一老药在新用时不得不考虑的问题。基于上述BBR的基本作用靶点在核酸,而其作用的化学特点是基于其自身的阳离子与靶点产生的氢键的结合效应,这种结合碱基的特异性与其分布的非特异性,在产生其他生物效应时还可能有哪些潜在生物活性是需要考察的,尤其是长期用药时更是如此。在跨膜转运方面,BBR可以通过阳离子转运体转运进入细胞[143],产生相应的生物活性;同时又可以被细胞膜上的逆转运蛋白转运出胞,更重要的是BBR还可以调控细胞膜上的逆转运蛋白的表达[144],从而构成了胞内浓度形成的复杂机制,这些都是在长期使用时所要考虑的。BBR的一些新的药理活性,无论是调血脂减肥,还是降血糖,或者是神经退行性病等均需要长期给药。长期口服给药需考虑如下问题:①有可能改变肠道菌群,进而影响体内代谢;②BBR与核酸结合的广泛性可能会带来尚未可知的结合效应;③BBR对能量代谢的影响进而有可能对机体能量代谢产生影响,比如对线粒体复合物的作用及其ATP影响等[121]。另外如果改变给药途径或通过相应制剂技术来促进吸收,将直接升高BBR的体内药物浓度,进而有可能增加出现毒副作用的概率。在早期应用中,BBR曾作为注射剂在国内临床使用而出现急性心衰致死亡的报道[3436],随着BBR注射剂的停止使用,相应的临床不良反应未再见报道。由此表明了BBR的心脏毒性及其使用方式、剂量的限定性。所以无论何种方法(包括通过改变剂型或制剂辅料)来提高吸收能力或体内血药浓度的尝试都有一定的局限性和风险性,即提高生物利用度即预示着毒性产生的风险增大。

6 小结

综上可见,BBR的诸如降血糖、调血脂、抗癌、防治神经退行性变等新的药理作用及其作用特点为其临床应用带来了新的命题。在提高BBR生物利用度所可能产生毒副作用以及长期给药对机体的综合影响等方面都有待于进一步研究和评估。以下几点建议值得考虑:①在利用相关技术提高BBR生物利用度的同时应加强安全性评价及其相关给药剂量的再确认,口服给药是较为安全的给药途径;②关注联合用药,例如BBR与降糖药二甲双胍(metaformin), BBR与他汀类(statins)调血脂药的联合用药等[145148];③探索靶向给药的可行性,比如抗肿瘤应用时由于其所需抑瘤浓度较高,口服给药难以达到有效浓度,且缺少组织特异性,因此靶向给药值得考虑;④加强BBR的毒理学研究,全面评价和认识BBR可能产生的毒副作用及其可能的机制,以有助于长期给药。此外,尚需建立长期给药的监控以完善对BBR长期给药所可能产生的副效应或不良反应的认识。

[参考文献]

[1] 医药工业编辑部. 全合成黄连素技术鉴定会在沈阳召开[J]. 医药工业,1975(8):43

[2] 东北制药总厂. 合成盐酸黄连素[J]医学研究通讯,1976(7):40

[3] Homma N, Kono M, Kadohira H, et al. The effect of berberine chloride on the intestinal flora of infants[J]. Arzneimittel Forschung, 1961, 11:450

[4] Mekawi M. Effect of berberine alkaloid on cholera vibro and its endotoxin[J]. J Egyptian Med Assoc, 1966, 49 (8):554

[5] 丁吟野. SB素治疗菌痢及c炎51例疗效报告[J]江苏中医,1959(6):31

[6] 陈世吉. 黄连素注射液治疗小儿呼吸道感染124例疗效观察[J]海南卫生,1976 (2):71

[7] 中国人民254医院传染科. 静滴黄连素对迁延性慢性肝炎的降酶效果观察[J]人民军医,1976 (8):62

[8] 杭州第二医院. 黄连素治疗肺结核30例的疗效[J]中国防痨,1959 (1):21

[9] Singh D, Hussain R. Clinical trials with berberine hydrochloride in the control of acute diarrhoeas[J]. Indian Pract, 1974, 27 (2):93

[10] Khin M, MyoKhin, NyuntNyuntWai. Clinical trial of berberine in acute watery diarrhea[J]. Br Med J, 1985, 291:1601

[11] Sack R B, Froehlich J L. Berberine inhibits intestinal secretory response of Vibrio cholerae and Escherichia coli enterotoxins[J]. Infect Immun, 1982, 35 (2):471

[12] Cheng Z F, Zhang Y Q, Liu F C. Berberine against gastrointestinal peptides elevation and mucous secretion in hyperthyroid diarrheic rats[J]. Regulat Peptides, 2009, 155:145

[13] Zhang Y, Wang X, Sha S, et al. Berberine increases the expression of NHE3 and AQP4 in sennoside Ainduced diarrhoea model[J]. Fitoterapia, 2012, 83 (6):1014

[14] 操寄望, 罗和生, 余保平, 等. 小檗碱对豚鼠结肠平滑肌细胞内游离钙浓度的影响[J]. 生理学报, 2000, 52 (4):343

[15] Cao M, Wang P, Sun C, et al. Amelioration of IFNγ and TNFαinduced intestinal epithelial barrier dysfunction by berberine via suppression of MLCKMLC phosphorylation signaling pathway[J]. PLoS ONE, 2013, 8 (5):e61944

[16] Liang H Y, Chen T, Yan H T, et al. Berberine ameliorates severe acute pancreatitisinduced intestinal barrier dysfunction via a myosin light chain phosphorylationdependent pathway[J]. Molecul Med Rep, 2014, 9 (5):1827

[17] Chen C, Tao C, Liu Z, et al. Randomized clinical trial of berberine hydrochloride in patients with diarrheapredominant irritable bowel syndrome[J]. Phytother Res, 2015, 29 (11):1822

[18] Wang X P, Lei F, Du F, et al. Protection of gastrointestinal mucosa from acute heavy alcohol consumption:the effect of berberine and its correlation with TLR2, 4/IL1βTNFα signaling[J]. PLoS ONE, 2015, 10(7):e0134044

[19] Feng A W, Gao W, Zhou G R, et al. Berberine ameliorates COX2 expression in rat small intestinal mucosa partially through PPARγ pathway during acute endotoxemia[J]. Inter Immunopharmacol, 2012, 12 (1):182

[20] Xie W D, Gu D Y, Li J N, et al. Effects and action mechanisms of berberine and rhizomacoptidis on gut microbes and obesity in highfat dietfed C57BL/6J mice[J]. PLoS ONE, 2011, 6(9):e24520

[21] 蔡恩,李祖堂,纪荣元,等黄连素治疗高血压十二例[J]福建中医药,1963,8(3):42

[22] Zhao X Z, Guo X. Antiarrhythmic effect and electrophysiologic study of berberine[J]. Chin J Cardiol, 1989, 17 (3):159

[23] Chun Y T, Yip T T, Lau K L, et al. A biochemical study on the hypotensive effect of berberine in rats[J]. Gener Pharmacol, 1979, 10 (3):177

[24] MarinNeto J A, Maciel B C, Secches A L, et al. Cardiovascular effects of berberine in patients with severe congestive heart failure[J]. Clinic Cardiol, 1988, 11 (4):253

[25] 郭环宇. 黄连素治疗室性期前收缩效果的系统评价[J]. 临床医学, 2015, 35(8):15

[26] Weimin H A. Study of the antiarrhythmic mechanism of berberine on delayed activation potassium current by voltage clamp[J]. Chin J Cardiol, 1992, 20(5):310

[27] Hua Z, Wang X L. Inhibitory effect of berberine on potassium channels in guinea pig ventricular myocytes[J]. Acta Pharmaceut Sin, 1994, 29(8):576

[28] SánchezChapula J. Increase in action potential duration and inhibition of the delayed rectifier outward current IK by berberine in cat ventricular myocytes[J]. Br J Pharmacol, 1996,117 (7):1427

[29] Wang Y X, Zheng Y M, Zhou X B. Inhibitory effects of berberine on ATPsensitive K+ channels in cardiac myocytes[J]. Eur J Pharmacol, 1996, 316 (2/3):307

[30] Xu S Z, Zhang Y, Ren J Y, et al. Effects of berberine on L and Ttype calcium channels in guinea pig ventricular myocytes[J]. Acta Pharmacol Sin, 1997, 18 (6):515

[31] 周祖玉,蓝庭剑,李红宇,等. 黄连素对培养鸡胚心室肌细胞钙单通道电流的影响[J]. 华西医科大学学报,1995,26(3):287.

[32] Luo L Y, Cheng B, Fang D C, et al. αadrenoceptor blocking effect of berberine in isolated rat anococcygeus muscles and rabbit aortic strips[J]. Acta Pharmacol Sin, 1986, 7 (5):407

[33] 汪永孝,赵广跃,谭月华, 等. 小檗碱的负性变时作用[J]中国药理学与毒理学杂志,1991, 5 (1):12

[34] 许坤芳. 静滴黄连素导致心跳骤停一例[J]中原医刊,1982(5):236

[35] 采荫芝,丁淑芬静脉滴注黄连素致循环呼吸骤停一例报告[J]安徽医学院学报,1983(4):43

[36] 王国定. 静脉滴注黄连素致循环呼吸骤停1例报告[J]. 武汉医学,1982(3):237

[37] 倪艳霞,刘安强,高云峰, 等. 黄连素治疗Ⅱ型糖尿病60例疗效观察及实验研究[J]中国中西医结合杂志, 1988, 8(12):711

[38] Chen Q M, Xie M Z. Effects of berberine on blood glucose regulation of normal mice[J]. Acta Pharmaceut Sin, 1987, 22 (3):161

[39] 潘国宇,王广基,孙建国,等. 小檗碱对葡萄糖吸收的抑制作用[J]. 药学学报, 2003, 38 (12):911

[40] Leng S H, Lu F E, Xu L JTherapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion[J]. Acta Pharmacol Sin, 2004,25 (4): 496

[41] Ko B S, Choi S B, Park S K, et al. Insulin sensitizing and insulinotropic action of berberine from Cortidis Rhizoma[J]. Biol Pharmaceut Bull, 2005, 28 (8):1431

[42] Yin J, Hu R, Chen M, et al. Effects of berberine on glucose metabolism in vitro[J]. Metabolism, 2002, 51 (11):1439

[43] Liu X, Li G, Zhu H, et al. Beneficial effect of berberine on hepatic insulin resistance in diabetic hamsters possibly involves in SREBPs, LXRα and PPARα transcriptional programs[J]. Endocr J, 2010, 57 (10):881

[44] Zhang H, Wei J, Xue R, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression[J]. Metabolism, 2010, 59 (2):285

[45] Cui G, Qin X, Zhang Y, et al. Berberine differentially modulates the activities of ERK, p38 MAPK, and JNK to suppress Th17 and Th1 T cell differentiation in type 1 diabetic mice[J]. J Biol Chem, 2009, 284 (41):28420

[46] Kong W J, Zhang H, Song D Q, et al. Berberine reduces insulin resistance through protein kinase Cdependent upregulation of insulin receptor expression[J]. Metabolism, 2009, 58 (1):109

[47] 陈立,杨明炜,汪忠煜,等. 小檗碱与梓醇及其配伍对胰岛素抵抗3T3L1脂肪细胞葡萄糖转运子4蛋白及CCb1相关蛋白表达的影响[J]. 中草药,2008, 39(10):1510.

[48] Kim S H, Shin E J, Kim E D, et al. Berberine activates GLUT1mediated glucose uptake in 3T3L1 adipocytes[J]. Biol Pharmaceut Bull, 2007, 30 (11):2120

[49] Cok A, Plaisier C, Salie M J, et al. Berberine acutely activates the glucose transport activity of GLUT1[J]. Biochimie, 2011, 93 (7):1187

[50] Lee Y S, Kim W S, Kim K H, et al. Berberine, a natural plant product, activates AMPactivated protein kinase with beneficial metabolic effects in diabetic and insulinresistant states[J]. Diabetes, 2006, 55 (8):2256

[51] Xu M, Xiao Y, Yin J, et al. Berberine promotes glucose consumption independently of AMPactivated protein kinase activation[J]. PLoS ONE, 2014, 9 (7):e103702

[52] Yu Y, Lu F E, Leng S H, et al. Effect of berberine on the expressions of insulin receptor and insulinlike growth factor1 receptor mRNA in islet beta cell strain of transgenic mice[J]. J Clin Rehabilit Tiss Engineer Res, 2007, 11 (32):6342

[53] Lan T, Shen X, Liu P, et al. Berberine ameliorates renal injury in diabetic C57BL/6 mice:involvement of suppression of SphKS1P signaling pathway[J]. Arch Biochem Biophys, 2010, 502 (2):112

[54] Liu W, Zhang X, Liu P, et al. Effects of berberine on matrix accumulation and NFkappa B signal pathway in alloxaninduced diabetic mice with renal injury[J]. Eur J Pharmacol, 2010, 638 (1/3):150

[55] Li X X, Li C B, Xiao J, et al. Berberine attenuates vascular remodeling and inflammation in a rat model of metabolic syndrome[J]. Biol Pharmaceut Bull, 2015, 38 (6):862

[56] KalalianMoghaddam H, Baluchnejadmojarad T, Roghani M, et al. Hippocampal synaptic plasticity restoration and antiapoptotic effect underlie berberine improvement of learning and memory in streptozotocindiabetic rats[J]. Eur J Pharmacol, 2013,698 (1/3):259

[57] 蒋激扬,耿东升,吐尔逊江・托卡依,等. 黄连素的抗炎作用及其机制[J]. 中国药理学通报,1998, 14(5):434.

[58] Hao X, Yao A, Gong J, et al. Berberine ameliorates proinflammatory cytokineinduced endoplasmic reticulum stress in human intestinal epithelial cells in vitro[J]. Inflammation, 2012, 35 (3):841

[59] Cheng W E, Ying Chang M, Wei J Y, et al. Berberine reduces Tolllike receptormediated macrophage migration by suppression of Src enhancement[J]. Eur J Pharmacol, 2015, 757:1

[60] Pang Y N, Hu J, Chai Y S, et al. Comparison of berberine and its five analogues on cell viability and COX2 expression during glucoseoxygen deprivation and reperfusion in PC12 cells[J]. J Chin Pharm Sci, 2014, 23 (9):617

[61] Shanbhag S M, Kulkarni H J, Gaitonde B B. Pharmacological actions of berberine on the central nervous system[J]. Jpn J Pharmacol, 1970, 20 (4):482

[62] Yamahara J. Behavioral pharmacology of berberine type alkaloids (I) central depressive action of coptidisrhizoma and its constituents (Japanese)[J]. Folia Pharmacol Jpn, 1976, 72 (7):899

[63] Wu J F, Shi Y J, Liu T P. Protective effects of berberine on cerebral ischemia in mice and rats[J]. Chin J Pharmacol Toxicol, 1995, 9 (2):100

[64] Asai M, Iwata N, Yoshikawa A, et al. Berberine alters the processing of Alzheimer′s amyloid precursor protein to decrease Aβ secretion[J]. Biochem Biophys Res Commun, 2007, 352 (2):498

[65] 陈魁敏, 周恒伟, 李玉芳, 等. 小檗碱改善AD模型小鼠认知障碍作用[J]. 中国公共卫生, 2015, 31(5):614

[66] Haghani M, Shabani M, Tondar M. The therapeutic potential of berberine against the altered intrinsic properties of the CA1 neurons induced by Aβ neurotoxicity[J]. Eur J Pharmacol, 2015, 758:82

[67] Durairajan S S K, Liu L F, Lu J H, et al. Berberine ameliorates βamyloid pathology, gliosis, and cognitive impairment in an Alzheimer′s disease transgenic mouse model[J]. Neurobiol Aging, 2012, 33 (12):2903

[68] Kwon I H, Choi H S, Shin K S, et al. Effects of berberine on 6hydroxydopamineinduced neurotoxicity in PC12 cells and a rat model of Parkinson′s disease[J]. Neurosci Lett, 2010, 486 (1):29

[69] Kulkarni S K, Dhir A. On the mechanism of antidepressantlike action of berberine chloride[J]. Eur J Pharmacol, 2008, 589 (1/3):163

[70] Peng W H, Wu C R, Chen C S, et al. Anxiolytic effect of berberine on exploratory activity of the mouse in two experimental anxiety models:Interaction with drugs acting at 5HT receptors[J]. Life Sci, 2004, 75 (20):2451

[71] Jiang W, Wei W, Gaertig M A, et al. Therapeutic effect of berberine on Huntington′s disease transgenic mouse model[J]. PLoS ONE, 2015, 10 (7):e0134142

[72] Mojarad T B, Roghani M. The anticonvulsant and antioxidant effects of berberine in kainateinduced temporal lobe epilepsy in rats[J]. Basic Clin Neurosci, 2014, 5 (2):124

[73] Zhang X, Zhang X, Wang C, et al. Neuroprotection of early and shorttime applying berberine in the acute phase of cerebral ischemia:upregulated pAkt, pGSK and pCREB, downregulated NFκB expression, ameliorated BBB permeability[J]. Brain Res, 2012, 1459:61

[74] Zhang Q, Qian Z, Pan L, et al. Hypoxiainducible factor 1 mediates the antiapoptosis of berberine in neurons during hypoxia/ischemia[J]. Acta Physiol Hungarica, 2012, 99 (3):311

[75] Hu J, Chai Y, Wang Y, et al. PI3K p55γ promoter activity enhancement is involved in the antiapoptotic effect of berberine against cerebral ischemiareperfusion[J]. Eur J Pharmacol, 2012,674 (2/3):132

[76] Chai Y S, Hu J, Lei F, et al. Effect of berberine on cell cycle arrest and cell survival during cerebral ischemia and reperfusion and correlations with p53/cyclin D1 and PI3K/Akt[J]. Eur J Pharmacol, 2013,708 (1/3):44

[77] Kim M, Shin M S, Lee J M, et al. Inhibitory effects of isoquinoline alkaloid berberine on ischemiainduced apoptosis via activation of phosphoinositide 3kinase/protein kinase B signaling pathway[J]. Inter Neurourol J, 2014, 18 (3):115

[78] Simǒes Pires E N, Frozza R L, Hoppe J B, et al. Berberine was neuroprotective against an in vitro model of brain ischemia:survival and apoptosis pathways involved[J]. Brain Res, 2014, 1557:26

[79] Panahi N, Mahmoudian M, Mortazavi P, et al. Effects of berberine on βsecretase activity in a rabbit model of Alzheimer′s disease[J]. Arch Med Sci, 2013, 9 (1):146

[80] Jia L, Liu J, Song Z, et al. Berberine suppresses amyloidbetainduced inflammatory response in microglia by inhibiting nuclear factorkappa B and mitogenactivated protein kinase signalling pathways[J]. J Pharm Pharmacol, 2012, 64 (10):1510

[81] Dixit P V, Parihar G, Jain D K, et al. Increased serotonergic neurotransmission is not responsible for the anticompulsive effect of berberine in a murine model of obsessivecompulsive disorder[J]. Behav Pharmacol, 2012, 23 (7):716

[82] Sun S, Wang K, Lei H, et al. Inhibition of organic cation transporter 2 and 3 may be involved in the mechanism of the antidepressantlike action of berberine[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2014, 49:1

[83] Lee B, Sur B, Yeom M, et al. Effect of berberine on depression and anxietylike behaviors and activation of the noradrenergic system induced by development ofdependence in rats[J]. Korean J Physiol Pharmacol, 2012, 16 (6):379

[84] Lin T Y, Lin Y W, Lu C W, et al. Berberine inhibits the release of glutamate in nerve terminals from rat cerebral cortex[J]. PLoS ONE, 2013, 8 (6):e67215

[85] Shin K S, Choi H S, Zhao T T, et al. Neurotoxic effects of berberine on longterm lDOPA administration in 6hydroxydopaminelesioned rat model of Parkinson′s disease[J]. Arch Pharmacal Res, 2013, 36 (6):759

[86] Bae J, Lee D, Kim Y K, et al. Berberine protects 6hydroxydopamineinduced human dopaminergic neuronal cell death through the induction of heme oxygenase1[J]. Mol Cells, 2013, 35 (2):151

[87] 殷峻, 陈名道, 杨颖, 等小檗碱对大鼠脂代谢的影响[J]上海第二医科大学学报, 2003, 23(S1):28

[88] Abidi P, Zhou Y, Jiang J D, et al. Extracellular signalregulated kinasedependent stabilization of hepatic lowdensity lipoprotein receptor mRNA by herbal medicine berberine[J]. Arterioscler Thromb Vasc Biol, 2005, 25 (10):2170

[89] Kong W, Wei J, Abidi P, et al. Berberine is a novel cholesterollowering drug working through a unique mechanism distinct from statins[J]. Nat Med, 2004, 10 (12):1344

[90] 师凌云,田蜜,常伟,等. 小檗碱对脂质代谢相关基因PPAR和CPTIA表达的影响[J]. 中国药理学通报,2008, 24 (11):1461.

[91] Chen F L, Yang Z H, Liu Y, et al. Berberine inhibits the expression of TNFα, MCP1, and IL6 in AcLDLstimulated macrophages through PPARγ pathway[J]. Endocrine, 2008, 33 (3):331

[92] Lee S, Lim H J, Park J H, et al. Berberineinduced LDLR upregulation involves JNK pathway[J]. Biochem Biophys Res Commun, 2007, 362 (4):853

[93] Brusq J M, Ancellin N, Grondin P, et al. Inhibition of lipid synthesis through activation of AMP kinase:an additional mechanism for the hypolipidemic effects of berberine[J]. J Lipid Res, 2006, 47 (6):1281

[94] Hu Y, Davies G E. Berberine inhibits adipogenesis in highfat dietinduced obesity mice[J]. Fitoterapia, 2010, 81 (5):358

[95] Hwang K H, Ahn J Y, Kim S, et al. Antiobesity effect of berberine in mice fed a high fat diet[J]. J Food Sci Nutr, 2009, 14 (4):298

[96] Kim W S, Lee Y S, Cha S H, et al. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity[J]. Am J Physiol, 2009, 296 (4):E812

[97] Zhang Z, Zhang H, Li B, et al. Berberine activates thermogenesis in white and brown adipose tissue[J]. Nat Commun, 2014, 5:5493

[98] Wang M X, Huo L M, Yang H C, et al. An experimental study on the photodynamic activity of berberine in vitro on cancer cells[J]. J Trad Chin Med, 1986, 6 (2):125

[99] Katiyar S K, Meeran S M, Katiyar N, et al. P53 cooperates berberineinduced growth inhibition and apoptosis of nonsmall cell human lung cancer cells in vitro and tumor xenograft growth in vivo[J]. Mol Carcinog, 2009, 48 (1):24

[100] Wang N, Feng Y, Zhu M, et al. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells:the cellular mechanism[J]. J Cell Biochem, 2010, 111 (6):1426

[101] Myoung S C, Dong Y Y, Ju H O, et al. Berberine inhibits human neuroblastoma cell growth through induction of p53dependent apoptosis[J]. Anticancer Res, 2008, 28 (6A):3777

[102] Tan W, Li N, Tan R, et al. Berberine interfered with breast cancer cells metabolism, balancing energy homeostasis [J]. AntiCancer Age Med Chem, 2015, 15 (1):66

[103] Choi M S, Oh J H, Kim S M, et al. Berberine inhibits p53dependent cell growth through induction of apoptosis of prostate cancer cells[J]. Inter J Oncol, 2009, 34 (5):1221

[104] Fukuda K, Hibiya Y, Mutoh M, et al. Inhibition by berberine of cyclooxygenase2 transcriptional activity in human colon cancer cells[J]. J Ethnopharmacol, 1999, 66 (2):227

[105] Mantena S K, Sharma S D, Katiyar S K. Berberine, a natural product, induces G1phase cell cycle arrest and caspase3dependent apoptosis in human prostate carcinoma cells[J]. Mol Cancer Ther, 2006, 5 (2):296

[106] Lin C C, Lin S Y, Chung J G, et al. Downregulation of cyclin B1 and upregulation of wee1 by berberine promotes entry of leukemia cells into the G2/Mphase of the cell cycle[J]. Anticancer Res, 2006, 26(2A):1097

[107] Lu W, Du S, Wang JBerberine inhibits the proliferation of prostate cancer cells and induces G0/G1 or G2/M phase arrest at different concentrations[J]. Mol Med Rep, 2015, 11(5):3920

[108] Kim H S, Kim M J, Kim E J, et al. Berberineinduced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX2 protein expression[J]. Biochem Pharmacol, 2012, 83:385

[109] Krey A K, Hahn F E. Berberine:complex with DNA[J]. Science, 1969,166 (3906):755

[110] Bhadra K, Kumar G S. Interaction of berberine, palmatine, coralyne, and sanguinarine to quadruplex DNA:a comparative spectroscopic and calorimetric study[J]. Biochim Biophy Acta, 2011, 1810 (4):485

[111] Tera M, Hirokawa T, Okabe S, et al. Design and synthesis of a berberine dimer:a fluorescent ligand with high affinity towards Gquadruplexes[J]. ChemA Eur J, 2015, 21 (41):14519

[112] Yang Y, He K, Zhang B S, et al. Study on interaction between plasmid DNA and berberine derivatives with aliphatic chain by fluorescence analysis[J]. Pharmacog Mag, 2014, 10 (38):97

[113] Wu F, Shao Y, Ma K, et al. Simultaneous fluorescence lightup and selective multicolor nucleobase recognition based on sequencedependent strong binding of berberine to DNA abasic site[J]. Org Biomol Chem, 2012, 10 (16):3300

[114] Gong G Q, Zong Z X, Song Y M. Spectrofluorometric determination of DNA and RNA with berberine[J]. Spectrochimica Acta Part A:Mol Biomol Spectros, 1999, 55 (9):1903

[115] Nandi R, Debnath D, Maiti M. Interactions of berberine with poly (A) and tRNA[J]. Biochim Biophys Acta, 1990, 1049 (3):339

[116] Islam M M, Basu A, Suresh Kumar G. Binding of 9O(ωamino) alkyl ether analogues of the plant alkaloid berberine to poly(A):insights into selfstructure induction[J]. Med Chem Comm, 2011, 2 (7):631

[117] Wang Y G, Kheir M M, Chai Y S, et al. Comprehensive study in the inhibitory effect of berberine on gene transcription, including TATA box[J]. PLoS ONE, 2011, 6(8):e23495

[118] Chai Y S, Yuan Z Y, Lei F, et al. Inhibition of retinoblastoma mRNA degradation through poly (A) involved in the neuroprotective effect of berberine against cerebral ischemia[J]. PLoS ONE, 2014, 9 (3):e90850

[119] Yuan Z Y, Lu X, Lei F, et al. TATA boxes in gene transcription and poly (A) tails in mRNA stability:new perspective on the effects of berberine[J]. Sci Rep, 2015, 5:18326

[120] Zhi D, Feng P F, Sun J L, et al. The enhancement of cardiac toxicity by concomitant administration of berberine and macrolides[J]Eur J Pharm Sci, 2015, 76:149

[121] Kysenius K, Brunello C A, Huttunen H J. Mitochondria and NMDA receptordependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury[J]. PLoS ONE, 2014, 9 (9):e107129

[122] 林穗珍,黎明涛,李晓瑜, 等. 小檗碱诱导大鼠神经元毒性死亡的研究[J]. 中山医科大学学报, 1998,19(4):14

[123] Kheir M M, Wang Y G, Hua L, et al. Acute toxicity of berberine and its correlation with the blood concentration in mice[J]. Food Chem Toxicol, 2010, 48:1105

[124] Jahnke G D, Price C J, Marr M C, et al. Developmental toxicity evaluation of berberine in rats and mice[J]. Birth Defects Res Part B Develop Reprod Toxicol, 2006, 77 (3):195

[125] 张洪超, 谭伟, 褚晴晴, 等. 盐酸小檗碱慢性毒性实验[J]. 解剖科学进展, 2015, 21(2):159

[126] Chevalier C, Stojanovic' O, Colin D J, et al. Gut microbiota orchestrates energy homeostasis during cold[J]. Cell, 2015, 163 (6):1360

[127] O′Toole P W, Jeffery I B. Gut microbiota and aging[J]. Science, 2015, 350 (6265):1214

[128] Greenhill C. Gut microbiota:proteins released by E. coli in the gut influence host appetite control[J]. Nat Rev Endocrinol, 2016,12 (1):4

[129] Holmes D. Gut microbiota:antidiabetic drug treatment confounds gut dysbiosis associated with type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2015, doi:101038/nrendo. 2015.\222

[130] Mishra A K, Dubey V, Ghosh A R. Obesity:an overview of possible role(s) of gut hormones, lipid sensing and gut microbiota[J]. Metabolism, 2016, 65 (1):48

[131] Kantarcioglu A S, Kiraz N, Aydin A. Microbiotagutbrain axis:yeast species isolated from stool samples of children with suspected or diagnosed autism spectrum disorders and in vitro susceptibility against nystatin and fluconazole[J]. Mycopathologia, 2016,181 (1/2):1

[132] 贺娅莎,王彦. 小檗碱对2型糖尿病小鼠肠道菌群影响的相关研究[J]. 糖尿病新世界, 2015, 35(8):42

[133] 朱超霞, 仓桢, 加孜热亚・再依拿提, 等. 盐酸小檗碱对高脂饮食诱导的非酒精性脂肪性肝病大鼠肠道菌群的影响[J]. 上海交通大学学报:医学版, 2015, 35(4):483

[134] Sakurai S, Tezuka M, Tamemasa O. Studies on the absorption, distribution and excretion of 3H berberine chloride (Japanese) [J]. Pharmacometrics, 1976, 11 (3):351

[135] Zhang X, Qiu F, Jiang J, et al. Intestinal absorption mechanisms of berberine, palmatine, jateorhizine, and coptisine:involvement of Pglycoprotein[J]. Xenobiotica, 2011, 41(4):290

[136] Pang Y N, Liang Y W, Feng T S, et al. Transportation of berberine into HepG2, HeLa and SY5Y cells:a correlation to its anticancer effect[J]. PLoS ONE, 2014, 9(11):e112937

[137] Ma J Y, Feng R, Tan X S, et al. Excretion of berberine and its metabolites in oral administration in rats[J]. J Pharm Sci, 2013, 102 (11):4181

[138] Zhang X, Zhao Y, Xu J, et al. Modulation of gut microbiota by berberine and metformin during the treatment of highfat dietinduced obesity in rats[J]. Sci Rep, 2015, 5:14405

[139] Fratter De Servi B. New oral delivery system to improve absorption of berberine:likely interaction of cationized chitosan with PGP Pump[J]. Int J Drug Delivery (Jaipur), 2015, 5 (1):33

[140] 李彩虹, 王俊玲, 周克元. 盐酸小檗碱纳米脂质体的优化制备方法及其体外细胞毒性研究[J]. 中国药理学通报, 2012, 28(9):1314

[141] Godugu C, Patel A R, Doddapaneni R, et al. Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinicacid[J]. PLoS ONE, 2014, 9 (3):e89919

[142] Tan X S, Ma J Y, Feng R, et al. Tissue distribution of berberine and its metabolites after oral administration in rats[J]. PLoS ONE, 2013, 8 (10):e77969

[143] Chen Y Y, Wang X L, Sun H, et al. Characterization of the transportation of berberine in Coptidis Rhizoma extract through rat primary cultured cortical neurons[J]. Biomed Chromatogr, 2008, 22:28

[144] 唐霞, 辛华雯, 李维亮, 等. 黄连素对HepG2细胞CYP3A4和Pgp的影响和作用机制研究[J]. 中国临床药理学与治疗学, 2015, 20(1):7

[145] Patil T, Patil S, Patil A, et al. Is berberine superior to metformin in management of diabetes mellitus and its complications[J]. Int J Pharmacog Phytochem Res, 2015, 7 (3):543

[146] Affuso F, Ruvolo A, Micillo F, et al. Effects of a nutraceutical combination (berberine, red yeast rice and policosanols) on lipid levels and endothelial function randomized, doubleblind, placebocontrolled study[J]. Nutr Metab Cardiovasc Dis, 2010, 20 (9):656

[147] 陈威妮, 段素静, 曾利侬, 等. 黄连素与二甲双胍治疗2型糖尿病随机对照试验系统评价[J]. 辽宁中医药大学学报, 2015,17(1):151

[148] 陈娜, 陈新宇, 杨浩, 等. 辛伐他汀联用黄连素治疗冠心病合并高胆固醇血症患者的临床观察[J]. 中南药学, 2015, 13(2):203