开篇:润墨网以专业的文秘视角,为您筛选了一篇灌浆期高温对小麦旗叶中SOD和GR活性及相关基因表达量的影响范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘要:以山农23和济麦20为试验材料,研究灌浆期(花后10~20 d)高温对小麦旗叶中超氧化物歧化酶(sod)和谷胱甘肽还原酶(gr)活性及相关基因表达量的影响。结果表明,在高温胁迫条件下,山农23的SOD活性一直显著高于对照,而济麦20的SOD活性变化呈先升高后降低的趋势。山农23中Fe-SOD和Mn-SOD表达量的变化与SOD活性的变化趋势相似,但Cu/Zn-SOD表达量的变化与SOD活性的变化趋势不同。济麦20中3个SOD基因表达量的变化均与SOD活性的变化基本一致。高温胁迫条件下两个小麦品种的GR活性均呈现先升高后降低的趋势,山农23中GR表达量的变化与GR活性的变化趋势基本一致,济麦20中GR表达量的变化早于GR活性的变化。总体来看,高温胁迫条件下山农23具有较强的抗氧化能力,Fe-SOD和Mn-SOD基因对SOD活性起主要作用,抗氧化酶相关基因对灌浆期高温胁迫的响应比酶活性更敏感。
关键词:小麦;高温;超氧化物歧化酶;谷胱甘肽还原酶;基因表达
中图分类号:S512.103.4文献标识号:A文章编号:1001-4942(2014)10-0030-05
3讨论与结论
高温引起抗氧化酶活性的改变可能因植物物种、品种、胁迫强度和胁迫持续时间的不同而异。Hu等[18]通过试验发现高温胁迫(42℃,1 h)能增加玉米叶片中SOD和GR的活性。Xue等[19]发现高温使水稻苗中SOD活性显著高于对照。本研究发现,高温处理过程中山农23的SOD活性一直高于对照,济麦20的SOD活性变化呈现先升高后降低的趋势;两个品种的GR活性虽然都呈先升高后降低的趋势,但是济麦20开始下降的时间早于山农23。表明高温胁迫对不同耐热性小麦品种的抗氧化酶活性的影响不同,山农23有较高的抗氧化酶活性和较强的耐热性。
高温引发各种植物响应,包括调控基因的表达。研究在RNA水平上的基因表达与植物耐热性的关系,能对抗氧化酶激活机制有更深入地了解,而不仅仅停留在酶活性方面。本研究发现,济麦20中三种SOD基因的变化趋势与酶活性的变化趋势基本一致。山农23中Fe-SOD和Mn-SOD在处理过程中的变化趋势与高温处理条件下SOD活性的变化趋势基本一致,但是Cu/Zn-SOD在处理2 d后表达量一直低于对照,这与SOD活性的变化趋势不一致。前人许多试验也发现非生物胁迫过程中Cu/Zn-SOD的转录水平的变化与SOD变化不完全一致。Xu等[10]研究发现早熟禾中叶绿体Cu/Zn-SOD与细胞质Cu/Zn-SOD在干旱胁迫后转录水平显著升高,但是SOD活性却呈下降的趋势。Kurepa等 (1997)[20]通过研究发现Cu2+过量积累能使叶绿体Cu/Zn-SOD上调,但是SOD活性没有发生显著变化。综上所述,Fe-SOD和Mn-SOD在抵抗高温损伤方面起重要作用。
山农23的GR转录水平的变化比酶活性的变化早2 d,说明抗氧化酶相关基因对高温胁迫的响应较酶活性更敏感。值得注意的是,在高温处理条件下济麦20的GR基因表达量在处理4 d时开始下调,但酶活性在8 d开始低于对照,原因可能是GR在处理前期超表达或者GR活性的变化不是由转录水平调控的,更可能受转录后水平调控。
参考文献:
[1]Maestri E, Klueva N, Perrotta C, et al. Molecular genetics of heat tolerance and heat shock proteins in cereals[J]. Plant Molecular Biology, 2002, 48(5/6): 667-681.
[2]Hasanuzzaman M, Nahar K, Alam M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684.
[3]Melchiorre M, Robert G A N, Trippi V, et al. Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state[J]. Plant Growth Regulation, 2009, 57(1): 57-68.
[4]Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant, Cell & Environment, 2010, 33(4): 453-467.
[5]De Pinto M C, Locato V, De Gara L. Redox regulation in plant programmed cell death[J]. Plant, Cell & Environment, 2012, 35(2): 234-244.
[6]Farooq M, Aziz T, Hussain M, et al. Glycinebetaine improves chilling tolerance in hybrid maize[J]. Journal of Agronomy and Crop Science, 2008, 194(2): 152-160.
[7]Gupta N K, Agarwal S, Agarwal V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013,35(6):1837-1842.
[8]马旭俊,朱大海. 植物超氧化物歧化酶(SOD)的研究进展[J]. 遗传,2003, 25(2): 225-231.
[9]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.
[10]Xu L, Han L, Huang B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255.
[11]Almeselmani M, Deshmukh P S, Sairam R K. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica, 2009, 57(1): 1-14.
[12]Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.
[13]Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.
[14]Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.
[15]Kanematsu S, Asada K. Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail[J]. Plant and Cell physiology, 1990, 31(1): 99-112.
[16]Smith M W, Doolittle R F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase[J]. Journal of Molecular Evolution, 1992, 34(2): 175-184.
[17]Ogawa K, Kanematsu S, Asada K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl[J]. Plant and Cell Physiology, 1996, 37(6): 790-799.
[18]Hu X, Liu R, Li Y, et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress[J]. Plant Growth Regulation, 2010, 60(3): 225-235.
[19]Xue D, Jiang H, Hu J, et al. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings[J]. Plant Physiology and Biochemistry, 2012,61:46-53.
[20]Kurepa J, Van Montagu M, Inz E D. Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess[J]. Journal of Experimental Botany, 1997, 48(12): 2007-2014.